MATH3404

Translating time so that $P_{1} O$ reaches 0 at $t=0$; if $S=0$ there, the previous switch was at $y=-\tau$, at P_{1}. If $S \neq 0$ at 0 , the previous switch must have been at some point Q. Trace back by π along the \mathcal{C}^{-}curve through Q. Curve "expands" by a factor $e^{k \pi}$.

Can show that the locus of R is

$$
\begin{aligned}
& x_{1}=-1-2 e^{k \pi}+e^{k(\pi-\sigma)} \cos \sigma \\
& x_{2}=e^{k(\pi-\sigma)} \sin \sigma \quad-\pi \leq \sigma \leq 0
\end{aligned}
$$

Each of the arcs of the switching curve is magnified by the factor $e^{k \pi}$ and translated by stretched amounts.

$$
u^{*}=\left\{\begin{array}{l}
-1 \quad \text { above } S=0 \& \text { on } P_{2} O \\
+1 \quad \text { below } S=0 \& \text { on } P_{1} O
\end{array}\right.
$$

Remark: The case for $\operatorname{Re}(\lambda)>0$ is similar, except the loops get smaller.

$\operatorname{Arcs} C_{1}^{+}: x_{1}=1-e^{+k \sigma} \cos \sigma, x_{2}=e^{k \sigma} \sin \sigma$ $-\pi \leq \sigma \leq 0$

$$
C_{2}^{+}: x_{1}=1+2 e^{-k \pi}-e^{-k(\pi-\sigma)} \cos \sigma
$$

$$
x_{2}=e^{-k(\pi-\sigma)} \sin \sigma
$$

$$
x_{2}=e^{-k(\pi-\sigma)} \sin \sigma .
$$

Distance between $P_{n} \& P_{n+1}$ is

$$
e^{-n k \pi}\left(1+e^{-k \pi}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

Hence

$$
\begin{aligned}
O P_{n+1} & =1+2 \sum_{p=1}^{\infty} e^{-p k \pi}+e^{-n k \pi} \\
& \rightarrow 1+2 \sum_{1}^{\infty} e^{-p k \pi} \\
& =\frac{1+e^{-k \pi}}{1-e^{-k \pi}}
\end{aligned}
$$

as $n \rightarrow \infty$ similarly for $O Q_{n+1}$.
Although there are an infinite number of arcs, the switching curve is bounded.

$$
u^{*}= \begin{cases}-1 & \text { above } \Gamma \& \text { on } \mathcal{C}_{1}^{-} \\ +1 & \text { below } \Gamma \& \text { on } \mathcal{C}_{1}^{+}\end{cases}
$$

Next topic:
\# J involves $\underset{\sim}{x}\left(t_{1}\right)$ the final state.
Pontryagin Max Princ for Control to a Target Curve \mathcal{C}.

$$
\begin{aligned}
\dot{x}_{1} & =f_{1}(\underset{\sim}{x}, u), \quad \dot{x}_{2}=f_{2}(\underset{\sim}{x}, u) \\
J & =\int_{t_{0}}^{t_{1}} f_{0}(\underset{\sim}{x}, u) d t
\end{aligned}
$$

Theorem. $\quad u^{*}(t)$ an admissible control taking $\underset{\sim}{x}{ }_{\sim}^{0}$ at t_{0} to a point on $\mathcal{C}: G\left(x_{1}, x_{2}\right)=0$ at $t=t_{1}$. For u^{*}, $\underset{\sim}{x}{ }^{*}$ optimal, it is necessary that $\exists \underset{\sim}{\psi}, \dot{\psi}_{i}=-\partial H / \partial x_{i}$, $i=1,2$, where

$$
H=-f_{0}+\psi_{1} f_{1}+\psi_{2} f_{2}
$$

such that

- H maximized at $u=u^{*}(t)$ for each $t_{0} \leq t \leq t_{1}$
- $H\left(\underset{\sim}{\psi^{*}}, \underset{\sim}{x}, u^{*}\right)=0$ (since final time t_{1} is unspecified)
- $\binom{\psi_{1}\left(t_{1}\right)}{\psi_{2}\left(t_{1}\right)}$ perpendicular to tangent at \mathcal{C} at $\underset{\sim}{x} \underset{\sim}{x}\left(t_{1}\right)=$
$\left(x_{1}^{*}\left(t_{1}\right), x_{2}^{*}\left(t_{1}\right)\right)$ Transversality condition

Corollary. If the state $\underset{\sim}{x}{ }^{1}$ at $t=t_{1}$ is completely unspecified, the transversality conditon becomes

$$
\binom{\psi_{1}\left(t_{1}\right)}{\psi_{2}\left(t_{1}\right)}=\underset{\sim}{0}
$$

Transversality condition at Q is
$(\dagger) \quad a \psi_{1}\left(t_{1}\right)+b \psi_{2}\left(t_{1}\right)=0$, where $\binom{a}{b}$ tangent to $G(\underset{\sim}{x})=0$ at $\underset{\sim}{x}=\underset{\sim}{x}\left(t_{1}\right)$. If the final state is completely unspecified, (\dagger) holds for all curves - i.e. all a, b. Hence $\psi_{1}\left(t_{1}\right)=\psi_{2}\left(t_{1}\right)=0$.

In particular, if the system is governed by a single DE with free endpoint $x\left(t_{1}\right)$, transversality condition is just

$$
\psi_{1}\left(t_{1}\right)=0
$$

Problems where cost depends on $\underset{\sim}{x}\left(t_{1}\right)$.

Realistic costs often involve the final state of a system. For example, in a medical control problem, we may be trying to maximize the concentration of a drug; or in an industrial process perhaps trying to minimize the quantity of some by final by product which is a pollutant.

Moreover, if we wished to have controls without constraints, then to prevent a solution with unbounded controls, we might introduce a heavy penalty, using terms like $\int_{t_{0}}^{t_{1}} u^{2} d t$ and obtain

$$
J=-x\left(t_{1}\right)+\int_{t_{0}}^{t_{1}} u^{2} d t .
$$

General Problem

$$
\underset{\sim}{\dot{x}}=\underset{\sim}{f(x} \underset{\sim}{x}, \underset{\sim}{u})=\left(\begin{array}{c}
f_{1} \\
\vdots \\
f_{m}
\end{array}\right)
$$

Control the system in $t_{0} \leq t \leq t_{1}$ from $\underset{\sim}{x}{ }^{0}$ at $t=t_{0}$ to $\underset{\sim}{x}{ }^{1}$ at $t=t_{1}$ in such a way that

$$
J=g(\underset{\sim}{x})+\int_{t_{0}}^{t_{1}} f_{0}(\underset{\sim}{x}, \underset{\sim}{u}) d t
$$

is minimized. Find the optimal control.
As stated, $\underset{\sim}{x}=\underset{\sim}{x}\left(t_{1}\right)$ is free - the transversality condition will have to be used. \# Introduce a new cost variable X_{0},

$$
\begin{gathered}
\dot{X}_{0}=\sum_{1}^{m} \frac{\partial g}{\partial x_{i}} f_{i}+f_{0} \quad X_{0}\left(t_{0}\right)=0 \\
=\sum_{1}^{m} \frac{\partial g}{\partial x_{i}} \dot{x}_{i}+f_{0} \\
\left.\Rightarrow \quad X_{0}\left(t_{1}\right)-X_{0}\left(t_{0}\right)=g \underset{\sim}{x}\left(t_{1}\right)\right)-g\left(\underset{\sim}{x}\left(t_{0}\right)\right)+\int_{t_{0}}^{t_{0}} f_{0} d t
\end{gathered}
$$

Since $X_{0}\left(t_{0}\right)=0$, we have,

$$
X_{0}\left(t_{1}\right)=J-g\left(\underset{\sim}{x}\left(t_{0}\right)\right) .
$$

Since $\underset{\sim}{x}\left(t_{0}\right)={\underset{\sim}{x}}^{0}$ is given, the quantity $g\left(\underset{\sim}{x}\left(t_{0}\right)\right)$ is known and constant. Hence, minimizing X_{0} is the same as minimizing J.

- Transversality conditions (C of V)
- Complex eigenvalues switching curve
- Riccati equation

\# Apply Pontryagin Max Princ:

$$
\begin{aligned}
H & =\psi_{0} \dot{X}_{0}+\psi_{1} f_{1}+\cdots+\psi_{n} f_{n} \\
& =\not \psi_{0}\left\{f_{0}+\sum_{1}^{n} \frac{\partial g}{\partial x_{j}} f_{j}\right\}+\sum_{1}^{n} \psi_{j} f_{j} .
\end{aligned}
$$

As previously, take $\psi_{0}=-1$ and the costate equations are

$$
\dot{\psi}_{i}=-\partial H / \partial x_{i}, \quad i=1, \ldots, n
$$

However, these are more complicated than the case where J does not involve $\underset{\sim}{x}\left(t_{1}\right)$. Let's look for a simplification.
\# Rearrange H

$$
H=-f_{0}+\sum_{1}^{n}\left[\psi_{j}-\partial g / \partial x_{j}\right] f_{j}
$$

Introduce "pseudo-costate" variables

$$
\begin{aligned}
\lambda_{i} & =\psi_{i}-\partial g / \partial x_{i}, \quad i=1,2, \ldots, n \\
H & =-f_{0}+\sum_{1}^{n} \lambda_{j} f_{j}:=H^{\prime}
\end{aligned}
$$

It turns out that

$$
\dot{\lambda}_{i}=-\frac{\partial H^{\prime}}{\partial x_{i}}, \quad i=1, \ldots, n
$$

* The λ_{i} 's formally act like costate variables and the equations are much easier to solve.
\# Since $\underset{\sim}{x}\left(t_{1}\right)=\underset{\sim}{x}{ }^{1}$ free, so the transversality condition is

$$
\begin{aligned}
& \psi_{i}\left(t_{1}\right)=0, \quad i=1, \ldots, n \\
& \Rightarrow \quad \lambda_{i}\left(t_{1}\right)=-\frac{\partial g}{\partial x_{i}}\left(t_{1}\right), i=1, \ldots, n
\end{aligned}
$$

Summary:

- Write $H^{\prime}=-f_{0}+\sum_{j} \lambda_{j} f_{j}$
- Maximize H^{\prime} as a function of u.
- End conditions $\underset{\sim}{x}\left(t_{0}\right)=\underset{\sim}{x}$

Two endpoint
Boundary Value $\quad \lambda_{i}\left(t_{1}\right)=-\left.\frac{\partial g}{\partial x_{i}}\right|_{t=t_{1}}$
Problem.

Example. $\dot{x}=-\alpha x+u$, controlled from $x=0$ at $t=0$ to $x\left(t_{1}\right)$ at a fixed time t_{1}, minimizing

$$
J=-x\left(t_{1}\right)+\int_{0}^{t_{1}} u^{2} d t
$$

Find the optimal control u^{*}.
(Control u is unconstrained, but the u^{2} term makes it expensive to use too much.)

Solution.

$$
-f_{0} \quad \lambda_{1} f_{1}
$$

$$
H=H^{\prime}=-u^{2}+\lambda(-\alpha x+u)
$$

Costate equations: $\quad \dot{\lambda}=-\partial H / \partial x$

$$
\dot{\lambda}=\alpha \lambda, \quad \lambda=A e^{\alpha t}
$$

To maximize H^{\prime} as a function of u,

$$
H_{u}^{\prime}=-2 u+\lambda=0 \quad u^{*}=\lambda / 2
$$

So $u^{*}=A e \frac{\alpha t}{2}$.
Optimal state equation

$$
\begin{aligned}
\dot{x} & =-\alpha x+u^{*}=-\alpha x+A e^{\alpha t} / 2 \\
\Rightarrow \quad x & =B e^{-\alpha t}+A e^{\alpha t} / 4 \alpha
\end{aligned}
$$

End conditions:

$$
x(0)=0
$$

$$
\begin{gathered}
0=B+A / 4 \alpha, \quad B=-A / 4 \alpha \\
\text { At } \quad t=t_{1}, \quad \lambda=-\frac{\partial g}{\partial x}
\end{gathered}
$$

Now $\quad g\left(x\left(t_{1}\right)\right)=-x\left(t_{1}\right), \quad$ so $g(x)=-x$

$$
\begin{gathered}
\Rightarrow \quad \lambda\left(t_{1}\right)=-\frac{\partial g}{\partial x}=+1, \quad A e^{\alpha t_{1}}=+1 \\
A=+e^{-\alpha t_{1}}
\end{gathered}
$$

Hence $u^{*}=+\frac{e^{-\alpha t_{1}}}{2} e^{\alpha t}=+\frac{1}{2} e^{\alpha\left(t-t_{1}\right)}$.
The optimal trajectory is

$$
\begin{aligned}
x & =-e^{-\alpha t_{1}} e^{-\alpha t}+\frac{1}{4 \alpha} e^{\alpha\left(t-t_{1}\right)} \\
& =\frac{e}{2 \alpha}\left[\frac{e^{\alpha(t)}-e^{-\alpha(t)}}{2}\right] \\
& =\frac{e^{-\alpha t_{1}}}{2 \alpha} \sinh \alpha t .
\end{aligned}
$$

This example we have just done is close to a special case of a wide class of useful and realistic systems:

