MATH3404

Translating time so that PO reaches 0 at t = 0; if
S = 0 there, the previous switch was at y = —7, at
P. If S # 0 at 0, the previous switch must have been
at some point (). Trace back by 7 along the C™ curve

through ). Curve “expands” by a factor e*.

Can show that the locus of R is

1 = —1 — 2" 4+ =) cos 0

k(r—o)

Ty = € sineg —an<o<0.

Each of the arcs of the switching curve is magnified by

k

the factor "™ and translated by stretched amounts.

—1 above S =0 & on PO
+1 below S =0 & on P,O.

Remark: The case for Re(A) > 0 is similar, except

the loops get smaller.



Ares Cf iz =1—e™coso, zy = e sino
—rm <0<
Cf iz =142 — e ") cos 0,
Ty = e k™) gin o
Ty = e k(=) sin o.

Distance between P, & P41 is

e (1 4+e ) 50 asn — oo.



Hence

oo
OF, .1 = 142 Z e PR 4 g
p=1

— 1+2§:e_plm
1

1+ e—kﬂ'
I

as n — oo similarly for OQ),,1.

Although there are an infinite number of arcs, the switch-

ing curve is bounded.

—1 above I' & on Cy
+1  below I' & on C;






Next topic:
# J involves x(t1) the final state.

Pontryagin Max Princ for Control to a Tar-

get Curve C.

j72 — f2($7u>

LTy = f1(ij u) L
J = /f1 fo(awf,u)dt

Theorem.  u*(t) an admissible control taking z°

at to to a point on C : G(x1, x2) = 0 at t = t;. For u*,
2* optimal, it is necessary that 34, 1, = —OH /0x;,
1 =1, 2, where

H = —fo+ 11+ a2/

such that
e H maximized at u = u*(t) for each tg <t < t;

o H(¢)" z* u*) = 0 (since final time ¢; is unspecified)



P1(t1)

° perpendicular to tangent at C at x*(t1) =
Pa(t1) ~

(x7(t1), x5(t1)) Transversality condition

Corollary. If the state x' at t = t; is completely

unspecified, the transversality conditon becomes

P1(t1)
Va(t1)

Transversality condition at () is

(T) ar(t1) + bo(ty) = 0, where (Cb‘) tangent to
G(x) = 0 at * = 2*(t1). If the final state is com-

~Y

pletely unspecified, (1) holds for all curves — i.e. all
a, b. Hence 11(t1) = 1o(t1) = 0.

In particular, if the system is governed by a single DE

with free endpoint x(¢1), transversality condition is just

Y (ty) = 0.



Problems where cost depends on x(t;).

Realistic costs often involve the final state of a sys-
tem. For example, in a medical control problem, we
may be trying to maximize the concentration of a drug;
or in an industrial process perhaps trying to minimize
the quantity of some by final by product which is a
pollutant.

Moreover, if we wished to have controls without con-
straints, then to prevent a solution with unbounded

controls, we might introduce a heavy penalty, using

t1
terms like / w’dt and obtain
'

0

1
J = —ZL’(t1> —l—/ u?dt.
t

0

General Problem



[ 1)

\ /)

Control the system in tg < t < ¢; from 2" at t = ¢, to

z! at t = ¢; in such a way that

t1
= g(a') +/ folxz,u)dt
" " 2

is minimized. Find the optimal control.

As stated, ' = x(t1) is free — the transversality con-

dition will have to be used. # Introduce a new cost
variable X,
' 0
Xo :ZTagfz-l-fo

e Xo(tg) =0
=21 asflerfO

= X()<t1> — Xo(to) = g( (tl to / fodt

Since Xy(ty) = 0, we have,

Xo(t1) = J — g((to)).



9
Since x(tg) = ' is given, the quantity g(x(ty)) is

known and constant. Hence, minimizing X is the same

as minimizing .J.
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e Transversality conditions (C' of V)
e Complex eigenvalues switching curve

e Riccati equation

# Apply Pontryagin Max Princ:
H = o Xo+Uifi+ -+ tufa
— {f0+z f]}+z¢]f]

As previously, take 1)y = —1 and the costate equations

are

IDZ:—(?H/(?CCZ ; i:1,...,n.

However, these are more complicated than the case
where J does not involve x(t1). Let’s look for a simpli-
fication.

# Rearrange H

n

H=—fo+ ) [b;—0g/0x)] ;.

1
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Introduce “pseudo-costate” variables
>\i = wz—ﬁg/ﬁx@, @':1,2,...,n
H = —f() + Z)\jfj = H/.
1

It turns out that

- oH'
>\7j: izl,...,n

8[132' ’

*The \;’s formally act like costate variables and the

equations are much easier to solve.

# Since x(t;) = x' free, so the transversality condi-

tion 1s

Summary:
o Write H' = —f() + Z )\jfj
J

e Maximize H' as a function of u.
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e End conditions z(ty) = x

Two endpoint

Boundary Value

Problem.
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Example. © = —ax + u, controlled from x = 0 at

t =0 to x(t1) at a fixed time ¢;, minimizing

t1
J=—x(t)) + / udt.
0

Find the optimal control u*.
(Control u is unconstrained, but the u? term makes it

expensive to use too much.)

— A
Solution. Jo Lh
H=H = —vu*+ \—az + u)

Costate equations: A= —0H/0x

A=a), \=Ae?

To maximize H' as a function of u,

H =-2u+X=0 |u"=)\/2

So ut = Ae%t.
Optimal state equation

T = —ar+u'=—ax+ Ae*/2

= v = Be ™+ Ae /4o
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End conditions:

z(0) =0
0=B+ A/da, B=—-A/da
At t=t, A=-%

Hence u* = —I—G_;tl et = —I—%eo‘(t_tl).
The optimal trajectory is

T = _e—atle—at 4 iea(t—tl)
%)

e 6oz(t) _ e—a(t)
20 2

6—0&751

— sinh at.
20

This example we have just done is close to a special

case of a wide class of useful and realistic systems:



