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MATH3404

Translating time so that P1O reaches 0 at t = 0; if

S = 0 there, the previous switch was at y = −τ , at

P1. If S 6= 0 at 0, the previous switch must have been

at some point Q. Trace back by π along the C− curve

through Q. Curve “expands” by a factor ekπ.

Can show that the locus of R is

x1 = −1− 2ekπ + ek(π−σ) cosσ

x2 = ek(π−σ) sinσ − π ≤ σ ≤ 0.

Each of the arcs of the switching curve is magnified by

the factor ekπ and translated by stretched amounts.

u∗ =

 −1 above S = 0 & on P2O

+1 below S = 0 & on P1O.

Remark: The case for Re(λ) > 0 is similar, except

the loops get smaller.
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Arcs C+
1 : x1 = 1− e+kσ cosσ, x2 = ekσ sinσ

−π ≤ σ ≤ 0

C+
2 : x1 = 1 + 2e−kπ − e−k(π−σ) cosσ,

x2 = e−k(π−σ) sinσ

...

x2 = e−k(π−σ) sinσ.

Distance between Pn & Pn+1 is

e−nkπ(1 + e−kπ) → 0 as n→∞.
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Hence

OPn+1 = 1 + 2

∞∑
p=1

e−pkπ + e−nkπ

→ 1 + 2

∞∑
1

e−pkπ

=
1 + e−kπ

1− e−kπ

as n→∞ similarly for OQn+1.

Although there are an infinite number of arcs, the switch-

ing curve is bounded.

u∗ =

 −1 above Γ & on C−1
+1 below Γ & on C+

1
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Next topic:

# J involves x
∼
(t1) the final state.

Pontryagin Max Princ for Control to a Tar-

get Curve C.

ẋ1 = f1(x∼
, u) , ẋ2 = f2(x∼

, u)

J =

∫ t1

t0

f0(x∼
, u)dt

Theorem. u∗(t) an admissible control taking x
∼

0

at t0 to a point on C : G(x1, x2) = 0 at t = t1. For u∗,

x
∼
∗ optimal, it is necessary that ∃ψ

∼
, ψ̇i = −∂H/∂xi,

i = 1, 2, where

H = −f0 + ψ1f1 + ψ2f2

such that

• H maximized at u = u∗(t) for each t0 ≤ t ≤ t1

• H(ψ
∼

∗, x
∼
∗, u∗) = 0 (since final time t1 is unspecified)
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•

 ψ1(t1)

ψ2(t1)

 perpendicular to tangent at C at x
∼
∗(t1) =

(x∗1(t1), x
∗
2(t1)) Transversality condition

Corollary. If the state x
∼

1 at t = t1 is completely

unspecified, the transversality conditon becomes ψ1(t1)

ψ2(t1)

 = 0
∼
.

Transversality condition at Q is

(†) aψ1(t1) + bψ2(t1) = 0, where
(
a
b

)
tangent to

G(x
∼
) = 0 at x

∼
= x

∼
∗(t1). If the final state is com-

pletely unspecified, (†) holds for all curves – i.e. all

a, b. Hence ψ1(t1) = ψ2(t1) = 0.

In particular, if the system is governed by a single DE

with free endpoint x(t1), transversality condition is just

ψ1(t1) = 0.
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Problems where cost depends on x
∼
(t1).

Realistic costs often involve the final state of a sys-

tem. For example, in a medical control problem, we

may be trying to maximize the concentration of a drug;

or in an industrial process perhaps trying to minimize

the quantity of some by final by product which is a

pollutant.

Moreover, if we wished to have controls without con-

straints, then to prevent a solution with unbounded

controls, we might introduce a heavy penalty, using

terms like

∫ t1

t0

u2dt and obtain

J = −x(t1) +

∫ t1

t0

u2dt.

General Problem
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ẋ
∼

= f
∼
(x
∼
, u
∼
) =


f1

...

fm

 .

Control the system in t0 ≤ t ≤ t1 from x
∼

0 at t = t0 to

x
∼

1 at t = t1 in such a way that

J = g(x
∼

1) +

∫ t1

t0

f0(x∼
, u
∼
)dt

is minimized. Find the optimal control.

As stated, x
∼

1 = x
∼
(t1) is free – the transversality con-

dition will have to be used. # Introduce a new cost

variable X0,

Ẋ0 =
∑m

1
∂g
∂xi
fi + f0

=
∑m

1
∂g
∂xi
ẋi + f0

X0(t0) = 0

⇒ X0(t1)−X0(t0) = g(x
∼
(t1))− g(x∼(t0)) +

∫ t0

t0

f0dt

Since X0(t0) = 0, we have,

X0(t1) = J − g(x
∼
(t0)).
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Since x
∼
(t0) = x

∼
0 is given, the quantity g(x

∼
(t0)) is

known and constant. Hence, minimizingX0 is the same

as minimizing J .
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• Transversality conditions (C of V )

• Complex eigenvalues switching curve

• Riccati equation

# Apply Pontryagin Max Princ:

H = ψ0Ẋ0 + ψ1f1 + · · · + ψnfn

= 6 ψ0

{
f0 +

n∑
1

∂g

∂xj
fj

}
+

n∑
1

ψjfj.

As previously, take ψ0 = −1 and the costate equations

are

ψ̇i = −∂H/∂xi , i = 1, ..., n.

However, these are more complicated than the case

where J does not involve x
∼
(t1). Let’s look for a simpli-

fication.

# Rearrange H

H = −f0 +

n∑
1

[ψj − ∂g/∂xj] fj.
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Introduce “pseudo-costate” variables

λi = ψi − ∂g/∂xi , i = 1, 2, ..., n

H = −f0 +

n∑
1

λjfj := H ′.

It turns out that

λ̇i = −∂H
′

∂xi
, i = 1, ..., n

* The λi’s formally act like costate variables and the

equations are much easier to solve.

# Since x
∼
(t1) = x

∼
1 free, so the transversality condi-

tion is

ψi(t1) = 0 , i = 1, ..., n.

⇒ λi(t1) = − ∂g
∂xi

(t1) , i = 1, ..., n.

Summary:

• Write H ′ = −f0 +
∑
j

λjfj

• Maximize H ′ as a function of u.
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• End conditions x
∼
(t0) = x

∼
0

Two endpoint

Boundary Value λi(t1) = − ∂g
∂xi

∣∣∣
t=t1

Problem.
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Example. ẋ = −αx + u, controlled from x = 0 at

t = 0 to x(t1) at a fixed time t1, minimizing

J = −x(t1) +

∫ t1

0

u2dt.

Find the optimal control u∗.

(Control u is unconstrained, but the u2 term makes it

expensive to use too much.)

Solution.
−f0 λ1f1

H = H ′ = −u2 + λ(−αx + u)

Costate equations: λ̇ = −∂H/∂x

λ̇ = αλ , λ = Aeαt

To maximize H ′ as a function of u,

H ′
u = −2u + λ = 0 u∗ = λ/2

So u∗ = Aeαt2 .

Optimal state equation

ẋ = −αx + u∗ = −αx + Aeαt/2

⇒ x = Be−αt + Aeαt/4α
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End conditions:

x(0) = 0

0 = B + A/4α , B = −A/4α

At t = t1 , λ = −∂g
∂x

Now g(x(t1)) = −x(t1) , so g(x) = −x

⇒ λ(t1) = −∂g
∂x = +1 , Aeαt1 = +1

A = +e−αt1

Hence u∗ = +e−αt1
2 eαt = +1

2e
α(t−t1).

The optimal trajectory is

x = −e−αt1e−αt +
1

4α
eα(t−t1)

=
e

2α

[
eα(t) − e−α(t)

2

]
=
e−αt1

2α
sinhαt.

This example we have just done is close to a special

case of a wide class of useful and realistic systems:


