
1. Optimization in R

Problem I. Let f(x) be a function on some interval I of
the real line R. Find the points of I at which f(x) achieves
its maximum and minimum values

Definition. If

f(x̄) ≤ f(x); for all x ∈ I, (1.1)

with equality for x = x̄ ∈ I, then f(x) achieves its minimum
value at x̄.

(1.1) means that f(x) achieves its global (or absolute)
minimum at the point x̄.

(Using g(x) = −f(x), we have a similar definition for a
maximum, ie. f(x̄) ≥ f(x) for all x ∈ I.)

Definition. f(x) has a local minimum at a point x̄ if

f(x̄) ≤ f(x); for all x ∈ N ⊂ I, (1.2)

with equality for x = x̄, where N is the ε-neighborhood
|x − x̄| < ε, with ε small.

Theorem 1.1. Let f(x) be defined on an open interval I =
(a, b), a < b and let f be C2 (continuous second derivative)
in some ε-neighborhood of x̄ ∈ (a, b). If f(x) has a local
minimum at x̄, then f ′(x̄) = 0.

1



2

Proof. If f(x̄) is a local minimum, then there exists a neigh-
borhood N such that

f(x̄ + h) − f(x̄) ≥ 0,∀x̄ + h ∈ N,

with equality for h = 0.

Using a Taylor expansion, we have

f(x̄ + h) = f(x̄) + hf ′(x̄) +
h2

2!
f ′′(x̄ + θh), 0 < θ < 1,

where 2! = 1 × 2 = 2. Then we have

hf ′(x̄) +
h2

2!
f ′′(x̄ + θh) ≥ 0 in N,

where f ′′(x̄ + θh) is bounded.

When h > 0 we can deduce that

f ′(x̄) +
h

2
f ′′(x̄ + θh) ≥ 0.

As h → 0, we obtain f ′(x̄) ≥ 0.

When h < 0, a similar argument yield f ′(x̄) ≤ 0, so
f ′(x̄) = 0 is a necessary condition for a local minimum. �
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We have two theorems on sufficient conditions of a local
minimum.

Theorem 1.2. Let f(x) be defined on an open interval
I = (a, b) and let f be C1 (continuous first derivative) in
some ε-neighborhood of x̄ ∈ (a, b). If f ′(x̄) = 0, then f(x)
has a local minimum at x̄ provided f ′(x̄ + h) < 0 for h < 0
and f ′(x̄ + h) > 0 for h > 0.

Example. Let f(x) = x2 be a function on (−1, 1).
f ′(x) = 2x so x̄ = 0 is a point satisfying all condition in
Theorem 1.2. Therefore f has a local minimum at x̄ = 0.

Theorem 1.3. Let f(x) be Cm (continuous first m-
derivative with integer m ≥ 1) in some ε-neighborhood of
x̄ ∈ (a, b). If

f ′(x̄) = f ′′(x̄) = · · · = f (m−1)(x̄) = 0, and f (m)(x̄) 6= 0,

then f(x̄) has a local minimum at x̄ provided (i) m is even
and (ii) f (m)(x̄) > 0.

Proof. The Taylor expansion yields

f(x̄ + h) − f(x̄) = hf ′(x̄) + · · · +
hm

m!
f (m)(x̄ + θh)

where 0 < θ < 1 and m! = 1 × 2 × · · · × m.

By assumption in Theorem 1.3, we have

f(x̄ + h) − f(x̄) =
hm

m!
f (m)(x̄ + θh)
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Since f (m) is continuous near x̄ and f (m)(x̄) > 0, we
know that f (m)(x̄ + θh) > 0 in some small h. Thus
f(t + h) − f(x̄) > 0 for small h. This means that f has
a local minimum at x̄. �

Critical points, end-points

and points of discontinuity

In the last section, we need to understand the point x̄

with f ′(x̄) = 0. But sometime f ′(x̄) does not exists.

For example, f(x) = |x|, with −∞ < x < ∞, has a
global minimum at x = 0, but f ′(0) doesn’t exist.

We need to extend the theory to the case that f(x) is
not differentiable.

We use the term critical point to mean a point at which
either f ′(x) = 0 or f ′(x) does not exists.

Theorem 1.4. Let f(x) be defined on (a, b) and differen-
tiable on (a, b) except at x̄. Consider a deleted neighborhood
of x̄, that is the set of points x̄−ε < x < x̄ and x̄ < x < x̄+ε

for some small positive ε. Then f(x) has a local minimum
at x̄ provide f ′(x) < 0 through x̄−ε < x < x̄ and f ′(x) > 0
through x̄ < x < x̄ + ε.

The natural of the interval I is important too. When
f(x) is defined on a closed interval [a, b]. Then f(x) has a
global maximum or minimum on I, possible achieve at the
end points a and b. For example, let f(x) = x on [0, 2] has
a minimum at 0 and maximum at 2.
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Consider f(x) = x3 on I = (−1, 2), then it has neither
a global maximum nor a minimum, but if I is [−1, 2], then
the function has a global minimum at x = −1 and a global
maximum at x = 2.

Finally, we shall assume that any f(x) we need to deal
with is piecewise continuous. If this is the case, the isolated
points of discontinuity also need to be examined because
they too could be global maxima or minima.

For example, consider

f(x) =

{

−x3 −∞ < x < 1

x − 3 1 ≤ x < ∞

has a global minimum at x = 1, where f(x) = −2.

If we assume that f and f ′ are continuous on I except
at a finite number of points at which f ′(x) does not ex-
ists or f(x) is discontinuous, the procedure to find a global
minimum is

(i) Find the stationary points (f ′(x) = 0) and use The-
orem 1.2 to determine any local minima

(ii) Examine f(x) near every point at which f(x) or f ′(x)
is discontinuous to see if it is a local minimum

(iii) Compare all these value of f(x) to find which is the
smallest;

(iv) If I is closed, evaluate f(a) and f(b) and compare
them with the smallest values in (iii). This will find the
minimum, if there is one.
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Exercises

Find the global minimum (when it exists) of each of the
following functions:

1. f(x) = 2x3 − 9x2 + 12, for −∞ < x < ∞

2. Prove Theorem 1.2.
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2. Optimization in R
n with n ≥ 2

In this section, we turn to deal with minimizing problem
of a function of several variables.

Let x = (x1, x2, ..., xn) be n variables.

Problem II. Let f(x) be a function on some region K

of R
n. Find the points of K at which f(x) achieves its

maximum and minimum values.

Definition. Let f(x) be a given function of x = (x1, ..., xn)
defined in K. We say that f has a global minimum at x = a,
with a ∈ K if

f(a) ≤ f(x); for all x ∈ K, (2.1)

with equality only for x = a.

Similarly, we define a local minima. Let N be an ε0-
neighborhood of a = (a1, ..., an), (ie. y = (y1, ..., yn) ∈ N ,

|y − a| =
√

|y1 − a1|2 + · · · + |yn − an|2 ≤ ε0)

For any point y in N and any nonzero vector h, there is
some sufficiently small ε such that y = a + εh.

Definition. Let f(x) be a given function of x = (x1, ..., xn)
defined in K. We say that f has a local minimum at x = a,
with a ∈ K if

f(a) ≤ f(y) for all h and ε with y = a + εh ∈ N,

(2.2)
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Now assume that in N , f has continuous fist and second
order partial derivatives with respect to all its variables and
that the third order derivatives are bounded. For a ∈ R

n,
we recall that the gradient of f(x) at a is

grad f(a) =

(

∂f

∂x1
(a), · · · ,

∂f

∂xn

(a)

)T

and that the Hessian matrix H(a) of f(x) is the n×n matrix
whose entries are the second derivatives of f evaluated at
a; i.e.

H(a) =

(

∂2f

∂xi∂xj

)

n×n

.

Let h be a vector in R
n (as n × 1-matrix) i.e.

h =











h1

.

.

.

hn











Then hT = (h1, ..., hn) is the transpose of h.

Note that hT gradf(a) =
∑n

i=1 hi
∂f
∂xi

(a) and

hT H(a)h =
n
∑

i,j=1

hi

∂2f

∂xi∂xj

hj

Then using Taylor series, we have

f(a + εh) = f(a) + εhT grad f(a) +
ε2

2
hT H(a)h + O(ε3)

for all h ∈ R
n and sufficiently small ε.
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Theorem 2.1. If f has a local minimum at x = a inside
a domain K and continuous second order derivatives, and
the third order derivative of f is bounded, then

grad f(a) = 0

Proof. Since a is a local minima,

f(a + εh) ≥ f(a)

for all h ∈ R
n and sufficiently small ε.

By the above Taylor expansion, we have

εhT +
ε2

2
hT H(a)h + O(ε3) ≥ 0

Divided by ε > 0 and letting ε → 0+, we have

hT gradf(a) ≥ 0.

Similarly, divided by ε < 0 and letting ε → 0−, we have
gradf(a) ≤ 0. Therefore we get

gradf(a) = 0. �

Example: Let f(x1, x2) = x2
1 + x2

2 be defined on R
n and

has a local minimum at (0, 0). Then gradf(0, 0) = 0.
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Theorem 2.2. Let f be defined an open domain K of R
n

and have continuous second order derivatives. Then a suffi-
cient condition for f(x) to have a local minimum at a point
a ∈ K is that

grad f(a) = 0 and hT H(a)h > 0, ∀h ∈ R
n.

Hints. Taylor Expansion

f(a + εh) − f(a) =
ε2

2
hT H(a)h + O(ε3) > 0

for a sufficient small ε. �

Theorem 2.3. (From Linear algebra)

The quadratic form hT Hh > 0 is positive if and only
if det H and all principal minors of H are positive (This
means that all eigenvalues of H are positive).

In R
3, this would require

∂2f

∂x2
1

> 0, det

(

∂2f

∂x2

1

∂2f
∂x1∂x2

∂2f
∂x1∂x2

∂2f

∂x2

2

)

> 0

and

det









∂2f

∂x2

1

∂2f
∂x1∂x2

∂2f
∂x1∂x3

∂2f
∂x2∂x1

∂2f

∂x2

2

∂2f
∂x2∂x3

∂2f
∂x3∂x1

∂2f
∂x3∂x2

∂2f

∂x2

3









> 0
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The corresponding theorem for a local maximum requires
that gradf = 0 and hT Hh < 0 for all h. A quadrative form
hT Hh is negative if and only (−1)n detH > 0 and the

principal minors of H alternate in sign with ∂2f

∂x2

1

< 0 (This

means that all eigenvalues of H are negative.)

Theorem 2.4. Let f be defined an open domain K of R
n

and have continuous second order derivatives. Then a suffi-
cient condition for f(x) to have a local maximum at a point
a ∈ K is that

grad f(a) = 0 and hT H(a)h < 0, ∀h ∈ R
n.

Hints. Take g(x) = −f(x). Then we can apply Theorem
2.2. �

Example 2.5. Minimize f(x1, x2) = x2
1 − x2

2 where K is
R

2.

Solution. gradf = (2x1,−2x2)
T and this is zero for x1 =

x2 = 0 and
(

2 0
0 −2

)

Now detH = −4 and ∂2f

∂x2

1

= 2, so the quadratic form

is neither positive nor negative and the origin is neither a
maximum nor a minimum. �
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Exercise:

Find the local maxima and minima of the functions in
R

2:

1. f(x1, x2) = (x2
1 − 4)2 + x2

2.

2. f(x1, x2) = x3
1 + x3

2 + 3x2
1 − 3x2

2 − 8.


