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Example 4.
T1 =Ty + U
B TS}
ji‘g = —XT9 +Uu
0 1
Here, det A = det = 0, so there is not an
0 —1

isolated singularity at 0, but all of x9 = 0. Here there

is no eigenvalue/eigenvector problem.
7
H = —1+¢i(ze+u) + o(—22 4+ u)
= —1+Y1x9 — Yoz + (Y1 + o)u

Maximized for u* = sgn(iy + o) = £1.

# Costate equations

- OH

=g, =0 = =k
I

: OH

Py = —a—:—¢1+¢2:—k+¢2
L2

— ¢2 = l@t—l—/{.



Switching curve S = 91 + 1 = le' + 2k. At most

one zero; that is, at most one switch.

# State equations for optimal orbits:

T1 =T +u*

To=—To+u", u" ==£l
dry _ &3 _ —waptu’
dvy @1  xotu* ”
This is zero on x5 = w* and infinite on x9 = —u*.

_ 4x2 _
On x5 = 0, i = 1.
Also, To=u"

=2 dry —

= this is a trajectory of the system






)
—1 above (to the right of)

['~0I'" and on I'0;
+1  below (to left of )
[=Or* & on I'TO.

This concludes our look at the case of real eigenvalues.

Systems with complex eigenvalues

If A (system matrix), © = Ax + (Tfl)u has complex
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eigenvalues, so does the costate matrix —A”, 1) =

~Y

— A4, Controls which maximize H still piecewise

~Y

constant, u* = =1, according to the sign of § =
Ly + Mapy, but it turns out that S has lots of ze-

ros. This means that more than one switch is possible.

Observe that the system without controls, z = Ax, has
oscillatory behaviour. The optimal control will use the

oscillation to drive the system to 0.

# Real eigenvalues, don’t really need to solve the costate

eqns. Lemma states there is at most one switch.

# Complex eigenvalues: must find ¢, and v, to get
an idea of S and find the switches.

e imaginary eigenvalues,
e negative real parts,

e positive real parts.
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Example 1. Imaginary eigenvalues

.jfl — X9 . 01 0
P T = + U
To=—T1+u ° —1 0 1
To be controlled to 0 in minimum time, with |u| < 1.

Solution.

H = —1+ Y129+ o(—21 + 1)

= —1+ Y129 — Yoy + us.

This 1s maximized when

u" = sgniy
= 41
Costate Eqns.
b1 = 1y
01 . :
T _ has eigenvalues +7 = ¢
—10

S =1py = ksin(t + 1), k and [ arbitrary constants



Zerosof Satt=nm —[,n=0, £1, £2, ...

State Eqns.
T] = X9
Ty = —x1+u", u ==+l
o-D=m S
=1 (1 —1) =29 _ .
! CE=m | E+E=0.
332——(:5‘1—1)
Tg = —§
That is

£ = acos(t + a)
Tro = —asin(t + «)
r1—1 = acos(t + «)
ro = —asin(t + «)

(1 — 1) + 29 = a’
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Zb1:—$1—|—1

$2<OiffC1>1

= —1 %(azﬁ—l):xg §=m+1
Ty = —(21+1) E+£=0
r1+ 1 =bcos(t + ()
ro = —bsin(t + )
(714 1) + 25 = b



9

Optimal paths consist of circles, C* for u* = 1, C~ for

u* = —1. Optimal path to zero consists of alternate

arcs of C*™ and C~ curves.
S = 1hy = ksin(t + 1)
Switches at t = nm — [, n integer.
So the switches will be 7w apart in time. In this
time C" or C~ sweeps out a semicircle (because
1+ 1=0bcos(t+ ()
Ty = —bsin(t + )

which is the equation of a circle parametrized by ¢ 0 <
t < 2m).

The origin is actually reached on either C; or C;

If we are on C; (or C;7) the optimal strategy is obvi-

ously to stay on it. Any other initial state must either
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reach C;” on a C~ path, or reach C;” on a C* path.
Suppose we have a C~ path intersects C{” at @ at

time 7. It must have switched to C~ path from a C*

path
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At R at the time 7 — 7, a semicircle away. Similarly
an optimal path switching onto C~ must have had the
previous switch on the lower half of the semicircle radius
1, centre (3, 0). Continue to work backwards in this
way, R must have come from a switch C~ to C* at R,
on a semicircle of radius 1, centred at (5, 0). And so

on:

—1  above C and on C;

+1  below C and on C;
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Eigenvalues with negative real part:

Example 2. Suppose that the uncontrolled system

has a stable focus at 0.

. —k 1
(51) = :1:+(If)u,k>0

L2

u <1

Solution.

H= -1+ ¢1(-/€£L‘1 + X9 + ku)
—|—¢2<—$1 — kxo + u)
ut =41 = sgn(kyr + o).
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Matrix A has eigenvalues A = —k £ ¢

uw =1

x1 = —kxi+ 10+ ku critical point
ZbQI—ZCl—kaQ—I—U (1,0>:N
r1 — 1 =ae ¥ cos(t + a)

Ty = —ae sin(t + )

Critical point (—=1,0) = M
r1+1=ae*cos(t + a)

Ty = —ae Msin(t + o)



