Example 4.

\[\dot{x}_1 = x_2 + u \quad , \quad |u| \leq 1, \]
\[\dot{x}_2 = -x_2 + u \]

Here, \(\text{det} A = \text{det} \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix} = 0 \), so there is not an isolated singularity at \(0 \), but all of \(x_2 = 0 \). Here there is no eigenvalue/eigenvector problem.

\[H = -1 + \psi_1 (x_2 + u) + \psi_2 (-x_2 + u) \]
\[= -1 + \psi_1 x_2 - \psi_2 x_2 + (\psi_1 + \psi_2) u \]

Maximized for \(u^* = \text{sgn}(\psi_1 + \psi_2) = \pm 1 \).

Costate equations

\[\dot{\psi}_1 = -\frac{\partial H}{\partial x_1} = 0 \quad \Rightarrow \quad \psi_1 = k \]
\[\dot{\psi}_2 = -\frac{\partial H}{\partial x_2} = -\psi_1 + \psi_2 = -k + \psi_2 \]
\[\Rightarrow \quad \psi_2 = le^t + k. \]
Switching curve $S = \psi_1 + \psi_2 = le^t + 2k$. At most one zero; that is, at most one switch.

State equations for optimal orbits:

\[
\dot{x}_1 = x_2 + u^*
\]

\[
\dot{x}_2 = -x_2 + u^*, \quad u^* = \pm 1
\]

\[
\frac{dx_2}{dx_1} = \frac{\dot{x}_2}{x_1} = \frac{-x_2 + u^*}{x_2 + u^*}.
\]

This is zero on $x_2 = u^*$ and infinite on $x_2 = -u^*$.

On $x_2 = 0$, $\frac{dx_2}{dx_1} = 1$.

Also, $x_2 = u^*$

\[
\Rightarrow \quad \frac{dx_2}{dx_1} = 0
\]

\[
\Rightarrow \quad \text{this is a trajectory of the system}
\]
\(u^* = +1 \)

\(u^* = -1 \)
\[u^* = +1 \]

\[u^* = \begin{cases}
-1 & \text{above (to the right of)} \\
\Gamma^{-0}\Gamma^+ \text{ and on } \Gamma^{-0}; \\
+1 & \text{below (to left of)} \\
\Gamma^{-O}\Gamma^+ \& \text{ on } \Gamma^{+O}.
\end{cases} \]

This concludes our look at the case of real eigenvalues.

Systems with complex eigenvalues

If \(A \) (system matrix), \(\dot{x} = Ax + (\begin{pmatrix} l \\ m \end{pmatrix})u \) has complex
eigenvalues, so does the costate matrix $-A^T$, $\dot{\psi} = -A^T\psi$. Controls which maximize H still piecewise constant, $u^* = \pm 1$, according to the sign of $S = L\psi_1 + M\psi_2$, but it turns out that S has lots of zeros. This means that more than one switch is possible.

Observe that the system without controls, $\dot{x} = Ax$, has oscillatory behaviour. The optimal control will use the oscillation to drive the system to 0.

Real eigenvalues, don’t really need to solve the costate eqns. Lemma states there is at most one switch.

Complex eigenvalues: must find ψ_1 and ψ_n to get an idea of S and find the switches.

- imaginary eigenvalues,
- negative real parts,
- positive real parts.
Example 1. Imaginary eigenvalues

\[\dot{x}_1 = x_2 \]
\[\dot{x}_2 = -x_1 + u \]

To be controlled to 0 in minimum time, with \(|u| \leq 1\).

Solution.

\[H = -1 + \psi_1 x_2 + \psi_2 (-x_1 + u) \]
\[= -1 + \psi_1 x_2 - \psi_2 x_1 + u \psi_2. \]

This is maximized when

\[u^* = sgn \psi_2 \]
\[= \pm 1 \]

Costate Eqns.

\[\dot{\psi}_1 = \psi_2 \]
\[\dot{\psi}_2 = -\psi_1 \quad \ddot{\psi}_2 + \psi_2 = 0. \]

\[A^T = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \] has eigenvalues \(\pm i = q \)

\[S = \psi_2 = k \sin(t + l), \] \(k \) and \(l \) arbitrary constants
Zeros of S at $t = n\pi - l, \ n = 0, \pm 1, \pm 2, \ldots$

State Eqns.

$$
\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= -x_1 + u^*, \ u^* = \pm 1
\end{align*}
$$

$$
\begin{align*}
u^* &= 1 \\
\frac{d}{dt}(x_1 - 1) &= x_2 \\
\dot{x}_2 &= -(x_1 - 1)
\end{align*}
$$

That is

$$
\begin{align*}
\xi &= a \cos(t + \alpha) \\
x_2 &= -a \sin(t + \alpha) \\
x_1 - 1 &= a \cos(t + \alpha) \\
x_2 &= -a \sin(t + \alpha) \\
(x_1 - 1)^2 + x_2 &= a^2
\end{align*}
$$
\[\dot{x}_1 = -x_1 + 1 \]
\[\dot{x}_2 < 0 \text{ if } x_1 > 1 \]

\[
\begin{align*}
 u^* &= -1 \\
 \frac{d}{dt}(x_1 + 1) &= x_2 \\
 \dot{x}_2 &= -(x_1 + 1) \\
 \ddot{\xi} + \dot{\xi} &= 0 \\
 x_1 + 1 &= b \cos(t + \beta) \\
 x_2 &= -b \sin(t + \beta) \\
 (x_1 + 1)^2 + x_2^2 &= b^2
\end{align*}
\]
Optimal paths consist of circles, C^+ for $u^* = 1$, C^- for $u^* = -1$. Optimal path to zero consists of alternate arcs of C^+ and C^- curves.

$$S = \psi_2 = k \sin(t + l)$$

Switches at $t = n\pi - l$, n integer.

So the switches will be π apart in time. In this time C^+ or C^- sweeps out a semicircle (because

$$x_1 + 1 = b \cos(t + \beta)$$
$$x_2 = -b \sin(t + \beta)$$

which is the equation of a circle parametrized by $t 0 \leq t \leq 2\pi$).

The origin is actually reached on either C_1^- or C_1^+

If we are on C_1^- (or C_1^+) the optimal strategy is obviously to stay on it. Any other initial state must either
reach C_1^+ on a C^- path, or reach C_1^- on a C^+ path.

Suppose we have a C^- path intersects C_1^+ at Q at time τ. It must have switched to C^- path from a C^+ path.
At R at the time $\tau - \pi$, a semicircle away. Similarly an optimal path switching onto C^- must have had the previous switch on the lower half of the semicircle radius 1, centre $(3, 0)$. Continue to work backwards in this way, R must have come from a switch C^- to C^+ at R', on a semicircle of radius 1, centred at $(5, 0)$. And so on:

$$u^* = \begin{cases} -1 & \text{above } C \text{ and on } C^-_1 \\ +1 & \text{below } C \text{ and on } C^+_1 \end{cases}$$
Eigenvalues with negative real part:

Example 2. Suppose that the uncontrolled system has a stable focus at 0.

\[
\begin{pmatrix}
\dot{x}_1 \\
\dot{x}_2
\end{pmatrix} = \begin{pmatrix}
-k & 1 \\
-1 & -k
\end{pmatrix} x + \begin{pmatrix}
k_1 \\
1
\end{pmatrix} u, \ k > 0
\sim
|u| \leq 1
\]

Solution.

\[
H = -1 + \psi_1(-kx_1 + x_2 + ku) \\
+ \psi_2(-x_1 - kx_2 + u)
\]

\[
u^* = \pm 1 = sgn(k\psi_1 + \psi_2).
\]
Matrix A has eigenvalues $\lambda = -k \pm i$

$u^* = 1$

\[
\begin{align*}
\dot{x}_1 &= -kx_1 + x_2 + ku \\
\dot{x}_2 &= -x_1 - kx_2 + u
\end{align*}
\]

Critical point

$(1, 0) = N$

\[
\begin{align*}
x_1 - 1 &= ae^{-kt} \cos(t + \alpha) \\
x_2 &= -ae^{kt} \sin(t + \alpha)
\end{align*}
\]

$u^* = -1$

Critical point

$(-1, 0) = M$

\[
\begin{align*}
x_1 + 1 &= ae^{-kt} \cos(t + \alpha) \\
x_2 &= -ae^{-kt} \sin(t + \alpha)
\end{align*}
\]