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Example 4.

ẋ1 = x2 + u

ẋ2 = −x2 + u
, |u| ≤ 1,

Here, detA = det

 0 1

0 −1

 = 0, so there is not an

isolated singularity at 0
∼
, but all of x2 = 0. Here there

is no eigenvalue/eigenvector problem.

#

H = −1 + ψ1(x2 + u) + ψ2(−x2 + u)

= −1 + ψ1x2 − ψ2x2 + (ψ1 + ψ2)u

Maximized for u∗ = sgn(ψ1 + ψ2) = ±1.

# Costate equations

ψ̇1 = −∂H
∂x1

= 0 ⇒ ψ1 = k

ψ̇2 = −∂H
∂x2

= −ψ1 + ψ2 = −k + ψ2

⇒ ψ2 = let + k.
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Switching curve S = ψ1 + ψ2 = let + 2k. At most

one zero; that is, at most one switch.

# State equations for optimal orbits:

ẋ1 = x2 + u∗

ẋ2 = −x2 + u∗ , u∗ = ±1

dx2
dx1

= ẋ2
ẋ1

= −x2+u
∗

x2+u∗
.

This is zero on x2 = u∗ and infinite on x2 = −u∗.

On x2 = 0, dx2
dx1

= 1.

Also, x2 = u∗

⇒ dx2
dx1

= 0

⇒ this is a trajectory of the system



3

u∗ = +1

u∗ = −1
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u∗ = +1

u∗ =



−1 above (to the right of)

Γ−0Γ+ and on Γ−0;

+1 below (to left of )

Γ−OΓ+ & on Γ+O.

This concludes our look at the case of real eigenvalues.

Systems with complex eigenvalues

If A (system matrix), ẋ
∼

= Ax
∼

+
(
l
m

)
u has complex
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eigenvalues, so does the costate matrix −AT , ψ̇
∼

=

−ATψ
∼

. Controls which maximize H still piecewise

constant, u∗ = ±1, according to the sign of S =

Lψ1 + Mψ2, but it turns out that S has lots of ze-

ros. This means that more than one switch is possible.

Observe that the system without controls, ẋ
∼

= Ax
∼
, has

oscillatory behaviour. The optimal control will use the

oscillation to drive the system to 0
∼
.

# Real eigenvalues, don’t really need to solve the costate

eqns. Lemma states there is at most one switch.

# Complex eigenvalues: must find ψ1 and ψn to get

an idea of S and find the switches.

• imaginary eigenvalues,

• negative real parts,

• positive real parts.
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Example 1. Imaginary eigenvalues

ẋ1 = x2

ẋ2 = −x1 + u
; ẋ
∼

=

 0 1

−1 0

 +

 0

1

u

To be controlled to 0
∼

in minimum time, with |u| ≤ 1.

Solution.

H = −1 + ψ1x2 + ψ2(−x1 + u)

= −1 + ψ1x2 − ψ2x1 + uψ2.

This is maximized when

u∗ = sgnψ2

= ±1

Costate Eqns.

ψ̇1 = ψ2

ψ̇2 = −ψ1 ψ̈2 + ψ2 = 0.

AT =

 0 1

−1 0

 has eigenvalues ±i = q

S = ψ2 = k sin(t + l), k and l arbitrary constants
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Zeros of S at t = nπ − l, n = 0, ±1, ±2, ...

State Eqns.

ẋ1 = x2

ẋ2 = −x1 + u∗ , u∗ = ±1

u∗ = 1 d
dt(x1 − 1) = x2

ẋ2 = −(x1 − 1)
,

ξ = x1 − 1

ξ̇ = x2

ẋ2 = −ξ

 ξ̈+ξ = 0.

That is

ξ = a cos(t + α)

x2 = −a sin(t + α)

x1 − 1 = a cos(t + α)

x2 = −a sin(t + α)

(x1 − 1)2 + x2 = a2
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ẋ1 = −x1 + 1

ẋ2 < 0 if x1 > 1

u∗ = −1 d
dt(x1 + 1) = x2 ξ = x1 + 1

ẋ2 = −(x1 + 1) ξ̈ + ξ = 0

x1 + 1 = b cos(t + β)

x2 = −b sin(t + β)

(x1 + 1)2 + x2
2 = b2
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Optimal paths consist of circles, C+ for u∗ = 1, C− for

u∗ = −1. Optimal path to zero consists of alternate

arcs of C+ and C− curves.

S = ψ2 = k sin(t + l)

Switches at t = nπ − l, n integer.

So the switches will be π apart in time. In this

time C+ or C− sweeps out a semicircle (because

x1 + 1 = b cos(t + β)

x2 = −b sin(t + β)

which is the equation of a circle parametrized by t 0 ≤

t ≤ 2π).

The origin is actually reached on either C−1 or C+
1

If we are on C−1 (or C+
1 ) the optimal strategy is obvi-

ously to stay on it. Any other initial state must either
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reach C+
1 on a C− path, or reach C−1 on a C+ path.

Suppose we have a C− path intersects C+
1 at Q at

time τ . It must have switched to C− path from a C+

path
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At R at the time τ − π, a semicircle away. Similarly

an optimal path switching onto C− must have had the

previous switch on the lower half of the semicircle radius

1, centre (3, 0). Continue to work backwards in this

way, R must have come from a switch C− to C+ at R′,

on a semicircle of radius 1, centred at (5, 0). And so

on:

u∗ =

 −1 above C and on C−1
+1 below C and on C+

1
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Eigenvalues with negative real part:

Example 2. Suppose that the uncontrolled system

has a stable focus at 0
∼
.

(
ẋ1
ẋ2

)
=

 −k 1

−1 −k

x
∼

+
(
k
1

)
u , k > 0

|u| ≤ 1

Solution.

H = −1 + ψ1(−kx1 + x2 + ku)

+ψ2(−x1 − kx2 + u)

u∗ = ±1 = sgn(kψ1 + ψ2).
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Matrix A has eigenvalues λ = −k ± i

u∗ = 1
ẋ1 = −kx1 + x2 + ku

ẋ2 = −x1 − kx2 + u

 critical point

(1, 0) = N

x1 − 1 = ae−kt cos(t + α)

x2 = −aekt sin(t + α)

u∗ = −1 Critical point (−1, 0) = M

x1 + 1 = ae−kt cos(t + α)

x2 = −ae−kt sin(t + α)


