MATH3404

Example 4.

$$\dot{x}_1 = x_2 + u , \quad |u| \le 1,$$

$$\dot{x}_2 = -x_2 + u , \quad |u| \le 1,$$

Here, det $A = \det \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix} = 0$, so there is not an
isolated singularity at $\overset{\circ}{0}$, but all of $x_2 = 0$. Here there
is no eigenvalue/eigenvector problem.

$$H = -1 + \psi_1(x_2 + u) + \psi_2(-x_2 + u)$$
$$= -1 + \psi_1 x_2 - \psi_2 x_2 + (\psi_1 + \psi_2) u$$

Maximized for $u^* = sgn(\psi_1 + \psi_2) = \pm 1$.

Costate equations

$$\dot{\psi}_1 = -\frac{\partial H}{\partial x_1} = 0 \implies \psi_1 = k$$
$$\dot{\psi}_2 = -\frac{\partial H}{\partial x_2} = -\psi_1 + \psi_2 = -k + \psi_2$$
$$\Rightarrow \quad \psi_2 = le^t + k.$$

Switching curve $S = \psi_1 + \psi_2 = le^t + 2k$. At most one zero; that is, at most one switch.

State equations for optimal orbits:

$$\dot{x}_1 = x_2 + u^*$$

$$\dot{x}_2 = -x_2 + u^* , \quad u^* = \pm 1$$

$$\frac{dx_2}{dx_1} = \frac{\dot{x}_2}{\dot{x}_1} = \frac{-x_2 + u^*}{x_2 + u^*}.$$

This is zero on $x_2 = u^*$ and infinite on $x_2 = -u^*$. On $x_2 = 0$, $\frac{dx_2}{dx_1} = 1$. Also, $x_2 = u^*$

$$\Rightarrow \qquad \qquad \frac{dx_2}{dx_1} = 0$$

 \Rightarrow this is a trajectory of the system

$$u^* = +1$$

$$u^{*} = +1$$

$$u^{*} = \begin{cases} -1 \text{ above (to the right of)} \\ \Gamma^{-}0\Gamma^{+} \text{ and on } \Gamma^{-}0; \\ +1 \text{ below (to left of)} \\ \Gamma^{-}O\Gamma^{+} \& \text{ on } \Gamma^{+}O. \end{cases}$$

This concludes our look at the case of real eigenvalues.

Systems with complex eigenvalues

If A (system matrix), $\dot{x} = Ax + \binom{l}{m}u$ has complex

eigenvalues, so does the costate matrix $-A^T$, $\dot{\psi} = -A^T \psi$. Controls which maximize H still piecewise constant, $u^* = \pm 1$, according to the sign of $S = L\psi_1 + M\psi_2$, but it turns out that S has lots of zeros. This means that more than one switch is possible.

Observe that the system without controls, $\dot{x} = Ax$, has oscillatory behaviour. The optimal control will use the oscillation to drive the system to 0.

- # Real eigenvalues, don't really need to solve the costate eqns. Lemma states there is at most one switch.
- # Complex eigenvalues: must find ψ_1 and ψ_n to get an idea of S and find the switches.
 - imaginary eigenvalues,
 - negative real parts,
 - positive real parts.

Example 1. Imaginary eigenvalues

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -x_1 + u$$
;
$$\dot{x} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u$$

To be controlled to $\underset{\sim}{0}$ in minimum time, with $|u| \leq 1$. Solution.

$$H = -1 + \psi_1 x_2 + \psi_2 (-x_1 + u)$$
$$= -1 + \psi_1 x_2 - \psi_2 x_1 + u \psi_2.$$

This is maximized when

$$u^* = sgn \psi_2$$
$$= \pm 1$$

Costate Eqns.

$$\dot{\psi}_1 = \psi_2$$

$$\dot{\psi}_2 = -\psi_1 \qquad \ddot{\psi}_2 + \psi_2 = 0.$$

$$A^T = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
 has eigenvalues $\pm i = q$

$$S = \psi_2 = k \sin(t+l), k \text{ and } l \text{ arbitrary constants}$$

Zeros of S at $t = n\pi - l$, $n = 0, \pm 1, \pm 2, ...$ State Eqns.

$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = -x_1 + u^*, \quad u^* = \pm 1$

$$u^{*} = 1 \qquad \qquad \frac{d}{dt}(x_{1} - 1) = x_{2} \\ \dot{x}_{2} = -(x_{1} - 1) \\ \dot{x}_{2} = -\xi \end{cases} \quad \begin{array}{c} \xi = x_{1} - 1 \\ \dot{\xi} = x_{2} \\ \dot{x}_{2} = -\xi \end{array} \quad \begin{array}{c} \ddot{\xi} = \xi \\ \ddot{\xi} = \xi \\ \dot{\xi} = 0. \end{array}$$

That is

$$\xi = a\cos(t + \alpha)$$
$$x_2 = -a\sin(t + \alpha)$$
$$x_1 - 1 = a\cos(t + \alpha)$$
$$x_2 = -a\sin(t + \alpha)$$
$$(x_1 - 1)^2 + x_2 = a^2$$

$$\dot{x}_1 = -x_1 + 1$$

 $\dot{x}_2 < 0 \text{ if } x_1 > 1$

$$u^* = -1 \qquad \frac{d}{dt}(x_1 + 1) = x_2 \qquad \xi = x_1 + 1$$
$$\dot{x}_2 = -(x_1 + 1) \qquad \ddot{\xi} + \xi = 0$$
$$x_1 + 1 = b\cos(t + \beta)$$
$$x_2 = -b\sin(t + \beta)$$
$$(x_1 + 1)^2 + x_2^2 = b^2$$

Optimal paths consist of circles, C^+ for $u^* = 1$, C^- for $u^* = -1$. Optimal path to zero consists of alternate arcs of C^+ and C^- curves.

$$S = \psi_2 = k\sin(t+l)$$

Switches at $t = n\pi - l$, *n* integer.

So the switches will be π apart in time. In this time C^+ or C^- sweeps out a semicircle (because

$$x_1 + 1 = b\cos(t + \beta)$$
$$x_2 = -b\sin(t + \beta)$$

which is the equation of a circle parametrized by $t \ 0 \le t \le 2\pi$).

The origin is actually reached on either \mathcal{C}_1^- or \mathcal{C}_1^+

If we are on C_1^- (or C_1^+) the optimal strategy is obviously to stay on it. Any other initial state must either

reach \mathcal{C}_1^+ on a \mathcal{C}^- path, or reach \mathcal{C}_1^- on a \mathcal{C}^+ path.

Suppose we have a \mathcal{C}^- path intersects \mathcal{C}_1^+ at Q at time τ . It must have switched to \mathcal{C}^- path from a \mathcal{C}^+ path

At R at the time $\tau - \pi$, a semicircle away. Similarly an optimal path switching onto C^- must have had the previous switch on the lower half of the semicircle radius 1, centre (3, 0). Continue to work backwards in this way, R must have come from a switch C^- to C^+ at R', on a semicircle of radius 1, centred at (5, 0). And so on:

$$u^* = \begin{cases} -1 & \text{above } \mathcal{C} \text{ and on } \mathcal{C}_1^- \\ +1 & \text{below } \mathcal{C} \text{ and on } \mathcal{C}_1^+ \end{cases}$$

Eigenvalues with negative real part:

Example 2. Suppose that the uncontrolled system has a stable focus at 0.

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} -k & 1 \\ -1 & -k \end{pmatrix} \underset{\sim}{x + \binom{k}{1}u}, \ k > 0$$
$$|u| \le 1$$

Solution.

$$H = -1 + \psi_1(-kx_1 + x_2 + ku) + \psi_2(-x_1 - kx_2 + u)$$
$$u^* = \pm 1 = sgn(k\psi_1 + \psi_2).$$

Matrix A has eigenvalues $\lambda = -k \pm i$

$$u^* = 1 \qquad \begin{array}{l} \dot{x}_1 = -kx_1 + x_2 + ku \\ \dot{x}_2 = -x_1 - kx_2 + u \\ x_1 - 1 = ae^{-kt}\cos(t + \alpha) \\ x_2 = -ae^{kt}\sin(t + \alpha) \end{array} \qquad \text{critical point}$$

$$u^* = -1$$
 Critical point $(-1, 0) = M$
 $x_1 + 1 = ae^{-kt}\cos(t + \alpha)$
 $x_2 = -ae^{-kt}\sin(t + \alpha)$