MATH3404

Example 4.

$$
\begin{aligned}
& \dot{x}_{1}=x_{2}+u \\
& \dot{x}_{2}=-x_{2}+u
\end{aligned}
$$

Here, $\operatorname{det} A=\operatorname{det}\left(\begin{array}{rr}0 & 1 \\ 0 & -1\end{array}\right)=0$, so there is not an isolated singularity at $\underset{\sim}{0}$, but all of $x_{2}=0$. Here there is no eigenvalue/eigenvector problem.
\#

$$
\begin{aligned}
H & =-1+\psi_{1}\left(x_{2}+u\right)+\psi_{2}\left(-x_{2}+u\right) \\
& =-1+\psi_{1} x_{2}-\psi_{2} x_{2}+\left(\psi_{1}+\psi_{2}\right) u
\end{aligned}
$$

Maximized for $u^{*}=\operatorname{sgn}\left(\psi_{1}+\psi_{2}\right)= \pm 1$.
\# Costate equations

$$
\begin{aligned}
\dot{\psi}_{1} & =-\frac{\partial H}{\partial x_{1}}=0 \quad \Rightarrow \quad \psi_{1}=k \\
\dot{\psi}_{2} & =-\frac{\partial H}{\partial x_{2}}=-\psi_{1}+\psi_{2}=-k+\psi_{2} \\
\Rightarrow \quad \psi_{2} & =l e^{t}+k
\end{aligned}
$$

Switching curve $S=\psi_{1}+\psi_{2}=l e^{t}+2 k$. At most one zero; that is, at most one switch.
\# State equations for optimal orbits:

$$
\begin{aligned}
& \dot{x}_{1}=x_{2}+u^{*} \\
& \dot{x}_{2}=-x_{2}+u^{*}, \quad u^{*}= \pm 1 \\
& \frac{d x_{2}}{d x_{1}}=\frac{\dot{x}_{2}}{\dot{x}_{1}}=\frac{-x_{2}+u^{*}}{x_{2}+u^{*}} .
\end{aligned}
$$

This is zero on $x_{2}=u^{*}$ and infinite on $x_{2}=-u^{*}$.
On $x_{2}=0, \frac{d x_{2}}{d x_{1}}=1$.
Also, $\quad x_{2}=u^{*}$

$$
\begin{aligned}
& \Rightarrow \quad \quad \frac{d x_{2}}{d x_{1}}=0 \\
& \Rightarrow \quad \text { this is a trajectory of the system }
\end{aligned}
$$

$$
u^{*}= \begin{cases}-1 & \text { above (to the right of) } \\ & \Gamma^{-} 0 \Gamma^{+} \text {and on } \Gamma^{-} 0 ; \\ +1 & \text { below (to left of }) \\ & \Gamma^{-} O \Gamma^{+} \& \text { on } \Gamma^{+} O\end{cases}
$$

This concludes our look at the case of real eigenvalues.

Systems with complex eigenvalues

If A (system matrix), $\underset{\sim}{\dot{x}}=A \underset{\sim}{x}+\binom{l}{m} u$ has complex
eigenvalues, so does the costate matrix $-A^{T}, \underset{\sim}{\dot{\psi}}=$ $-A^{T} \underset{\sim}{\sim}$. Controls which maximize H still piecewise constant, $u^{*}= \pm 1$, according to the sign of $S=$ $L \psi_{1}+M \psi_{2}$, but it turns out that S has lots of zeros. This means that more than one switch is possible.

Observe that the system without controls, $\underset{\sim}{x}=A \underset{\sim}{x}$, has oscillatory behaviour. The optimal control will use the oscillation to drive the system to $\underset{\sim}{0}$.
\# Real eigenvalues, don't really need to solve the costate eqns. Lemma states there is at most one switch.
\# Complex eigenvalues: must find ψ_{1} and ψ_{n} to get an idea of S and find the switches.

- imaginary eigenvalues,
- negative real parts,
- positive real parts.

Example 1. Imaginary eigenvalues

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=-x_{1}+u
\end{aligned} \quad ; \underset{\sim}{\dot{x}}=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)+\binom{0}{1} u
$$

To be controlled to $\underset{\sim}{0}$ in minimum time, with $|u| \leq 1$.
Solution.

$$
\begin{aligned}
H & =-1+\psi_{1} x_{2}+\psi_{2}\left(-x_{1}+u\right) \\
& =-1+\psi_{1} x_{2}-\psi_{2} x_{1}+u \psi_{2} .
\end{aligned}
$$

This is maximized when

$$
\begin{aligned}
u^{*} & =\operatorname{sgn} \psi_{2} \\
& = \pm 1
\end{aligned}
$$

Costate Eqns.

$$
\begin{aligned}
& \dot{\psi}_{1}=\psi_{2} \\
& \dot{\psi}_{2}=-\psi_{1} \quad \ddot{\psi}_{2}+\psi_{2}=0
\end{aligned}
$$

$A^{T}=\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$ has eigenvalues $\pm i=q$
$S=\psi_{2}=k \sin (t+l), k$ and l arbitrary constants

Zeros of S at $t=n \pi-l, n=0, \pm 1, \pm 2, \ldots$
State Eqns.

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=-x_{1}+u^{*}, \quad u^{*}= \pm 1
\end{aligned}
$$

$$
\begin{array}{ll}
u^{*}=1 & \frac{d}{d t}\left(x_{1}-1\right)=x_{2} \\
\dot{x}_{2}=-\left(x_{1}-1\right) & \left.\begin{array}{l}
\xi=x_{1}-1 \\
\\
\end{array} \begin{array}{l}
\dot{\xi}=x_{2} \\
\dot{x}_{2}=-\xi
\end{array}\right\} \ddot{\xi}+\xi=0 .
\end{array}
$$

That is

$$
\begin{aligned}
\xi & =a \cos (t+\alpha) \\
x_{2} & =-a \sin (t+\alpha) \\
x_{1}-1 & =a \cos (t+\alpha) \\
x_{2} & =-a \sin (t+\alpha) \\
\left(x_{1}-1\right)^{2}+x_{2} & =a^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \dot{x}_{1}=-x_{1}+1 \\
& \dot{x}_{2}<0 \text { if } x_{1}>1
\end{aligned}
$$

$$
\begin{array}{lll}
u^{*}=-1 & \frac{d}{d t}\left(x_{1}+1\right)=x_{2} & \xi=x_{1}+1 \\
\dot{x}_{2}=-\left(x_{1}+1\right) & \ddot{\xi}+\xi=0 \\
& x_{1}+1=b \cos (t+\beta) \\
& x_{2}=-b \sin (t+\beta) & \\
& \left(x_{1}+1\right)^{2}+x_{2}^{2}=b^{2} &
\end{array}
$$

Optimal paths consist of circles, \mathcal{C}^{+}for $u^{*}=1, \mathcal{C}^{-}$for $u^{*}=-1$. Optimal path to zero consists of alternate arcs of \mathcal{C}^{+}and \mathcal{C}^{-}curves.

$$
S=\psi_{2}=k \sin (t+l)
$$

Switches at $t=n \pi-l, n$ integer.
So the switches will be π apart in time. In this time \mathcal{C}^{+}or \mathcal{C}^{-}sweeps out a semicircle (because

$$
\begin{aligned}
& x_{1}+1=b \cos (t+\beta) \\
& x_{2}=-b \sin (t+\beta)
\end{aligned}
$$

which is the equation of a circle parametrized by $t 0 \leq$ $t \leq 2 \pi)$.

The origin is actually reached on either \mathcal{C}_{1}^{-}or \mathcal{C}_{1}^{+}

If we are on $\mathcal{C}_{1}^{-}\left(\right.$or $\left.\mathcal{C}_{1}^{+}\right)$the optimal strategy is obviously to stay on it. Any other initial state must either
reach \mathcal{C}_{1}^{+}on a \mathcal{C}^{-}path, or reach \mathcal{C}_{1}^{-}on a \mathcal{C}^{+}path.
Suppose we have a \mathcal{C}^{-}path intersects \mathcal{C}_{1}^{+}at Q at time τ. It must have switched to \mathcal{C}^{-}path from a \mathcal{C}^{+} path

At R at the time $\tau-\pi$, a semicircle away. Similarly an optimal path switching onto \mathcal{C}^{-}must have had the previous switch on the lower half of the semicircle radius 1 , centre $(3,0)$. Continue to work backwards in this way, R must have come from a switch \mathcal{C}^{-}to \mathcal{C}^{+}at R^{\prime}, on a semicircle of radius 1 , centred at $(5,0)$. And so on:

$$
u^{*}= \begin{cases}-1 & \text { above } \mathcal{C} \text { and on } \mathcal{C}_{1}^{-} \\ +1 & \text { below } \mathcal{C} \text { and on } \mathcal{C}_{1}^{+}\end{cases}
$$

Eigenvalues with negative real part:

Example 2. Suppose that the uncontrolled system has a stable focus at $\underset{\sim}{0}$.

$$
\begin{gathered}
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{rr}
-k & 1 \\
-1 & -k
\end{array}\right) \underset{\sim}{x}+\binom{k}{1} u, k>0 \\
|u| \leq 1
\end{gathered}
$$

Solution.

$$
\begin{aligned}
& H=-1+\psi_{1}\left(-k x_{1}+x_{2}+k u\right) \\
& +\psi_{2}\left(-x_{1}-k x_{2}+u\right) \\
& u^{*}= \pm 1=\operatorname{sgn}\left(k \psi_{1}+\psi_{2}\right) .
\end{aligned}
$$

Matrix A has eigenvalues $\lambda=-k \pm i$

$$
\begin{array}{ll}
u^{*}=1 & \left.\left.\begin{array}{l}
\dot{x}_{1}=-k x_{1}+x_{2}+k u \\
\\
\dot{x}_{2}=-x_{1}-k x_{2}+u
\end{array}\right\} \quad \begin{array}{l}
\text { critical point } \\
\\
\\
x_{1}-1=a e^{-k t} \cos (t+\alpha) \\
\\
\\
x_{2}=-a e^{k t} \sin (t+\alpha) \\
u^{*}=-1 \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
x_{2}+1=-a e^{-k t} \sin (t i c a l \\
\\
\end{array}+\alpha\right)
\end{array}
$$

