MATH 3402

Tutorial sheet 9

1. If

$$
A=\left(\begin{array}{ll}
a & b \\
0 & a
\end{array}\right)
$$

show that

$$
\|A\|_{2}=\frac{1}{2}\left(|b|+\sqrt{|b|^{2}+4|a|^{2}}\right)
$$

and if

$$
A=\left(\begin{array}{ll}
0 & 1 \\
a & b
\end{array}\right)
$$

then

$$
\|A\|_{2}=\frac{1}{2}\left(\sqrt{(|a|+1)^{2}+|b|^{2}}+\sqrt{(|a|-1)^{2}+|b|^{2}}\right)
$$

2. If $C(0,1)$ is the set of functions continuous on $[0,1]$ with the uniform metric, and $D(0,1)$ is the set of continuously differentiable functions on $[0,1]$ with the same metric;
(a) Is $T: C \rightarrow D$ given by $T(f)(x)=\int_{0}^{x} f(t) d t$ continuous?
(b) Is $T: D \rightarrow C$ given by $T(f)(x)=f^{\prime}(x)$ continuous?
3. Let T be a linear transformation from ℓ^{1} to ℓ^{1}.

Set $e_{i}=\left\{\delta_{i j}\right\}$ and $a_{i}=T\left(e_{i}\right)$.
Show that $\|T\|=\sup _{i}\left\|a_{i}\right\|_{1}$.
4. Let X be a finite dimensional normed linear space, and Y a normed linear space.

If T is a linear operator from X to Y, show that T is continuous.

