MATH 3402

TUTORIAL SHEET 8

1. Which of the following are contractions on \mathbb{R}^2 with the Euclidean metric?

 $f: R^2 \to R^2 \text{ given by the matrix } \begin{pmatrix} \frac{1}{2} & 0\\ 0 & \frac{1}{3} \end{pmatrix}$ $f: R^2 \to R^2 \text{ given by the matrix } \begin{pmatrix} \frac{1}{6} & \frac{1}{6}\\ -\frac{1}{3} & \frac{2}{3} \end{pmatrix}$ $f: R^2 \to R^2 \text{ given by the matrix } \begin{pmatrix} \frac{1}{2} & \frac{6}{7}\\ -\frac{5}{6} & \frac{2}{3} \end{pmatrix}$ (i)

(ii)

(iii)
$$f: R^2 \to R^2$$
 given by the matrix $\begin{pmatrix} \frac{1}{2} \\ - \end{pmatrix}$

2. Show that if $h \in C(a,b)$ (with the uniform metric) and b - a < 1, then $\mathcal{F}: C(a,b) \to C(a,b)$ is a contraction mapping, where

$$\mathcal{F}(g)(x) = h(x) + \int_{a}^{x} g(t) dt$$

for $x \in [a, b], g \in C(a, b)$.

What is the fixed point of \mathcal{F} .

3. The space ℓ^1 is defined to be the set of all sequences $x = \{\xi^{(i)}\}\$ such that $\sum_{i=1}^{\infty} |\xi^{(i)}|$ converges.

If $b = \{\beta^{(i)}\}$ and $c = \{\gamma^{(i)}\}$ are elements of ℓ^1 , show that if $|\lambda|$ is sufficiently small, there is a unique element $a = \{\alpha^{(i)}\} \in \ell^1$ such that

$$\alpha^{(n)} = \beta^{(n)} + \lambda \sum_{i=1}^{\infty} \gamma^{(i)} \alpha^{(n+i-1)}$$

4. Let T be the linear transformation from X to Y whose matrix representation is/ \sim

$$T(x) = \begin{pmatrix} 1 & 2\\ 0 & 1 \end{pmatrix} \begin{pmatrix} \xi_1\\ \xi_2 \end{pmatrix}$$

1

Determine ||T|| when (a) $X = \ell^2(2)$ and $Y = \ell^2(2)$;

- (b) $X = \ell^1(2)$ and $Y = \ell^1(2)$; (c) $X = \ell^{\infty}(2)$ and $Y = \ell^{\infty}(2)$;
- (d) $X = \ell^1(2)$ and $Y = \ell^{\infty}(2)$;