MATH 3402

Tutorial Sheet 8

1. Which of the following are contractions on \mathbb{R}^{2} with the Euclidean metric?

$$
f: R^{2} \rightarrow R^{2} \text { given by the matrix }\left(\begin{array}{cc}
\frac{1}{2} & 0 \tag{i}\\
0 & \frac{1}{3}
\end{array}\right)
$$

(ii)

$$
f: R^{2} \rightarrow R^{2} \text { given by the matrix }\left(\begin{array}{cc}
\frac{1}{6} & \frac{1}{6} \\
-\frac{1}{3} & \frac{2}{3}
\end{array}\right)
$$

(iii)

$$
f: R^{2} \rightarrow R^{2} \text { given by the matrix }\left(\begin{array}{cc}
\frac{1}{2} & \frac{6}{7} \\
-\frac{5}{6} & \frac{2}{3}
\end{array}\right)
$$

2. Show that if $h \in C(a, b)$ (with the uniform metric) and $b-a<1$, then $\mathcal{F}: C(a, b) \rightarrow C(a, b)$ is a contraction mapping, where

$$
\mathcal{F}(g)(x)=h(x)+\int_{a}^{x} g(t) d t
$$

for $x \in[a, b], g \in C(a, b)$.
What is the fixed point of \mathcal{F}.
3. The space ℓ^{1} is defined to be the set of all sequences $x=\left\{\xi^{(i)}\right\}$ such that $\sum_{i=1}^{\infty}\left|\xi^{(i)}\right|$ converges.

If $b=\left\{\beta^{(i)}\right\}$ and $c=\left\{\gamma^{(i)}\right\}$ are elements of ℓ^{1}, show that if $|\lambda|$ is sufficiently small, there is a unique element $a=\left\{\alpha^{(i)}\right\} \in \ell^{1}$ such that

$$
\alpha^{(n)}=\beta^{(n)}+\lambda \sum_{i=1}^{\infty} \gamma^{(i)} \alpha^{(n+i-1)} .
$$

4. Let T be the linear transformation from X to Y whose matrix representation is

$$
T(x)=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}
$$

Determine $\|T\|$ when
(a) $X=\ell^{2}(2)$ and $Y=\ell^{2}(2)$;
(b) $X=\ell^{1}(2)$ and $Y=\ell^{1}(2)$;
(c) $X=\ell^{\infty}(2)$ and $Y=\ell^{\infty}(2)$;
(d) $X=\ell^{1}(2)$ and $Y=\ell^{\infty}(2)$;

