MATH 3402

Tutorial Sheet 7

1. The function $f:(A, d) \rightarrow(A, d)$ has the property that

$$
d(f(x), f(y))<d(x, y) \forall x \neq y \in A
$$

Show that if f has a fixed point in A then it is unique.
2. The real function f is continuous from $[a, b]$ to $[a, b]$. Show that f has a fixed point in $[a, b]$.
3. Determine to $3 \mathrm{~d} p$ the solution of the equation

$$
x^{3}=6 x+6
$$

(The solution is approximately 3.)
4. For fixed $a \in \mathbb{R}$, we define the mapping from $\mathbb{R} \backslash\{-1\}$ to \mathbb{R} by

$$
f(x)=1+\frac{a}{1+x}
$$

(a) For which values of a does this mapping have a fixed point?
(b) For which values of a is the mapping a (local) contraction mapping?
(c) Starting with $w_{0}=1$, for which values of a does the sequence generated by

$$
w_{n+1}=f\left(w_{n}\right)
$$

converge?
If we choose $a \in \mathbb{C}$ instead, show that the function is a contraction mapping provided $\operatorname{Re}(\sqrt{1+a}) \geq \epsilon>0$.

Hint: $a=(\sqrt{1+a}-1)(\sqrt{1+a}+1)$.
5. Let $C\left(0, \frac{1}{2}\right)$ be the set of real functions continuous on $\left[0, \frac{1}{2}\right]$, together with the uniform sup metric.

Define $f: C\left(0, \frac{1}{2}\right) \rightarrow C\left(0, \frac{1}{2}\right)$ by

$$
(f(x))(t)=t(x(t)+1) .
$$

Show that f is a contraction mapping, and determine its fixed point.
Verify that the sequence starting with $x_{0}(t)=t$ converges to the fixed point.

