MATH 3402

TUTORIAL SHEET 6

1. Show that $Cl(A \cup B) = Cl(A) \cup Cl(B)$.

2. Verify that the collection \mathcal{T}_Y defined for the one-point compactification process is a topology on Y.

3. Let $Y = \mathbb{R} \cup \{y\}$ be the one-point compactification of \mathbb{R} with the usual metric. Show that $f: Y \to Y$ defined by

$$f(x) = \frac{1}{x} ; x \in \mathbb{R} \setminus \{0\} ;$$

$$f(0) = y ; f(y) = 0$$

is a continuous function on Y.

4. Given two topologies \mathcal{T}_1 , \mathcal{T}_2 on a set A, with $\mathcal{T}_1 \subset \mathcal{T}_2$, prove that if $\{A, \mathcal{T}_2\}$ is compact then so is $\{A, \mathcal{T}_1\}$.

5. Which of the following subsets of \mathbb{R} , \mathbb{R}^2 are compact?

(i)
$$[0,1)$$

- $[0,\infty)$ (ii)
- $\mathbb{Q} \cap [0,1]$ (iii)

(iv)
$$\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$$

(v) $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$

(v)
$$\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$$

(vi)
$$\{(x,y) \in \mathbb{R}^2 : |x| + |y| \le 1\}$$

(vii)
$$\{(x, y) \in \mathbb{R}^2 : x \ge 1, 0 \le y \le 1/x\}$$

6. Let A be a non-empty compact subset of the metric space (X, d), let L be any fixed positive real number, and let $F: A \to \mathbb{R}$ be a function with the property that

$$|F(x) - F(y)| \le Ld(x, y) \ \forall \ x, y \in A \ .$$

1

Show that for any sequence a_1, a_2, a_3, \ldots in A, the real sequence $F(a_1), F(a_2), F(a_3), \ldots$ has a convergent subsequence with limit $F(a_0)$ for some $a_0 \in A$.

Deduce that the set $F(A) = \{F(a) : a \in A\}$ is compact in \mathbb{R} .

Hence show that there is $a^* \in A$ such that $F(a^*) \leq F(a)$ for $a \in A$.