MATH 3402

Tutorial sheet 5

1. If f is a many-one transformation of A into B, and A_{1} and A_{2} are subsets of A, prove that
(a)
(b)

$$
\begin{aligned}
& f\left(A_{1} \cup A_{2}\right)=f\left(A_{1}\right) \cup f\left(A_{2}\right) ; \\
& f\left(A_{1} \cap A_{2}\right) \subset f\left(A_{1}\right) \cap f\left(A_{2}\right) .
\end{aligned}
$$

In the second case, show that equality holds for all A_{1} and A_{2} if and only if f is a one-one transformation.
2. Let A be the set of real numbers, and let a subset of A be called open if it is A or the null set or if it consists of points x such that $x>k$ for some k.

Prove that the open sets defined in this way form a topology for A.
3. If $M_{1}=\left(A_{1}, d_{1}\right)$ and $M_{2}=\left(A_{2}, d_{2}\right)$ are two metric spaces, show that the function defined by

$$
d\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=d_{1}\left(x_{1}, y_{1}\right)+d_{2}\left(x_{2}, y_{2}\right)
$$

where $x_{1}, y_{1} \in A_{1}$ and $x_{2}, y_{2} \in A_{2}$ is a metric on $A_{1} \times A_{2}$.
Show that the topology generated by this metric is the product topology.
4. If S, T are topological spaces homeomorphic respectively to S^{\prime}, T^{\prime}, prove that $S \times T$ is homeomorphic to $S^{\prime} \times T^{\prime}$.

