MATH 3402

Tutorial Sheet 3

1. Show that a finite union of bounded sets is bounded.

Show that the intersection of an arbitrary number of bounded sets is either bounded or empty.
2. Show that if a metric space (X, d) has the property that every bounded sequence converges, then X consists of only one point.
3. Say whether the following sequences converge, and find their limit if they do:
a) $a_{n}=x^{-n}$ in $C\left(\frac{1}{3}, \frac{2}{3}\right)$ (the continuous functions on the open interval $\left.\left(\frac{1}{3}, \frac{2}{3}\right)\right)$ with the uniform - sup - metric;
b) $a_{n}=e^{-n x}$ in $C[0,1]$ with the uniform metric.
c) $a_{n}=\left(\alpha_{n}, f\left(\alpha_{n}\right)\right)$ in \mathbb{R} with the Euclidean metric, where α_{n} is a convergent sequence in \mathbb{R} with limit α, and $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous.
4. Determine the diameter of the set $\{|z|<r\}$ in (\mathbb{C}, d) where

$$
d\left(z_{1}, z_{2}\right)=\frac{2\left|z_{1}-z_{2}\right|}{\sqrt{1+\left|z_{1}\right|^{2}} \sqrt{1+\left|z_{2}\right|^{2}}}
$$

Repeat the exercise for the set $\{|z-1|<r\}$.
5. Let $\left\{f_{n}(x)\right\}$ be a sequence of functions, continuous on the closed interval $[a, b] \in \mathbb{R}$, which is a Cauchy sequence with respect to the uniform metric on $C[a, b]$.
a) Prove that the sequence converges pointwise on $[a, b]$.
b) Prove that the function defined by these pointwise limits is continuous on $[a, b]$.
6. Show that the taxicab and Euclidean metrics are topologically equivalent on \mathbb{R}^{2}.
7. Show that the metrics

$$
d_{1}\left(z_{1}, z_{2}\right)=\left|z_{1}-z_{2}\right|
$$

and

$$
d_{2}=\frac{2\left|z_{1}-z_{2}\right|}{\sqrt{1+\left|z_{1}\right|^{2}} \sqrt{1+\left|z_{2}\right|^{2}}}
$$

are topologically equivalent on \mathbb{C}.

