MATH 3402

Tutorial Sheet 2

1. In each of the following cases, say whether (X, d) is a metric space or not. If it is not, say which of the axioms fails.
(a)

$$
X=\mathbb{R}^{2} ; d\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=\left|y-y^{\prime}\right|
$$

(b)

$$
X=\mathbb{C} ; d\left(z_{1}, z_{2}\right)=\left|z_{1}-z_{2}\right| .
$$

(c)

$$
X=\mathbb{Q} ; d(x, y)=(x-y)^{3} .
$$

(d)

$$
X=\mathbb{C} ; d\left(z_{1}, z_{2}\right)=\min \left\{\left|z_{1}\right|+\left|z_{2}\right|,\left|z_{1}-1\right|+\left|z_{2}-1\right|\right\} \text { if } z_{1} \neq z_{2}, d(z, z)=0
$$

(e)

$$
X=\mathbb{R} ; d(x, y)=\left|\int_{x}^{y} f(t) d t\right|
$$

where $f: \mathbb{R} \rightarrow \mathbb{R}$ is a given positive integrable function.
2. Sketch the sets $\left\{\underline{x} \in \mathbb{R}^{2}, d(\underline{x}, \underline{0})<1\right\}$ when $d(\underline{x}, \underline{y})$ is
(a) The Euclidean metric;
(b) The taxicab metric;
(c) The sup metric;
(d) The discrete metric.
3. For $z_{j}=x_{j}+i y_{j} \in \mathbb{C}$, let

$$
\xi_{j}=\frac{2 x_{j}}{1+\left|z_{j}\right|^{2}} ; \eta_{j}=\frac{2 y_{j}}{1+\left|z_{j}\right|^{2}} ; \zeta_{j}=\frac{1-\left|z_{j}\right|^{2}}{1+\left|z_{j}\right|^{2}} .
$$

Show that
(i)

$$
\xi_{j}^{2}+\eta_{j}^{2}+\zeta_{j}^{2}=1
$$

$$
\begin{equation*}
\left(\left(\xi_{1}-\xi_{2}\right)^{2}+\left(\eta_{1}-\eta_{2}\right)^{2}+\left(\zeta_{1}-\zeta_{2}\right)^{2}\right)^{1 / 2}=\frac{2\left|z_{1}-z_{2}\right|}{\sqrt{\left(1+\left|z_{1}\right|^{2}\right.} \sqrt{\left(1+\left|z_{2}\right|^{2}\right)}} \tag{ii}
\end{equation*}
$$

Hence deduce that

$$
d\left(z_{1}, z_{2}\right)=\frac{2\left|z_{1}-z_{2}\right|}{\sqrt{\left(1+\left|z_{1}\right|^{2}\right.} \sqrt{\left(1+\left|z_{2}\right|^{2}\right)}}
$$

is a metric on \mathbb{C}.
Show that the sequence $\left\{z_{n}=n\right\}$ is a Cauchy sequence with respect to this metric.
4. Show that if for some $x_{0} \in S, d\left(x, x_{0}\right)<k$ for all $x \in Q$, then for any $a \in S$ there is a constant k_{a} such that $d(x, a)<k_{a}$ for all $x \in Q$.
(That is, a set Q is bounded in S if it is bounded with respect to some member of S.)

