MATH 3402

TUTORIAL SHEET 1

1. Describe each of the following sets as the empty set, as \mathbb{R} , or in interval notation as appropriate:

(a)
$$\bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n} \right)$$

(b)
$$\bigcup_{n=1}^{\infty} (-n,n)$$

(c)
$$\bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, 1 + \frac{1}{n} \right)$$

(d)
$$\bigcup_{n=1}^{\infty} \left(-\frac{1}{n}, 2 + \frac{1}{n} \right)$$

(e)
$$\bigcup_{n=1}^{\infty} \left(\mathbb{R} \setminus \left(-\frac{1}{n}, \frac{1}{n} \right) \right)$$

(f)
$$\bigcap_{n=1}^{\infty} \left(\mathbb{R} \setminus \left[\frac{1}{n}, 2 + \frac{1}{n} \right] \right)$$

2. Show that if $A \subset B \subset \mathbb{R}$, and if B is bounded above, then A is bounded above, and $\sup A \leq \sup B$.

3. Let a_0 and a_1 be distinct real numbers.

Define $a_n = \frac{1}{2}(a_{n-1} + a_{n-2})$ for each positive integer $n \ge 2$. Show that $\{a_n\}$ is a Cauchy sequence.

4. Suppose x is an accumulation point of $\{a_n : n \in \mathbb{N}\}$. Show that there is a subsequence of $\{a_n\}$ that converges to x.

5. Given the non-negative real numbers a_1, a_2, \ldots, a_r , let $a = \sup\{a_i\}$. Prove that for any integer n,

$$a^n \le a_1^n + a_2^n + \dots + a_r^n \le ra^n ,$$

and determine

$$\lim_{n\to\infty}(a_1^n+a_2^n+\cdots+a_r^n)^{1/n}.$$

6. Consider the sequence

$$0, 1, -1, 2, -2, \frac{1}{2}, -\frac{1}{2}, \ldots$$

used to demonstrate the countability of the rationals.

- a) What is the fiftieth term in this sequence?
- b) Which term in the sequence is $-\frac{4}{5}$?