MATH 3402

Tutorial Sheet 1

1. Describe each of the following sets as the empty set, as \mathbb{R}, or in interval notation as appropriate:
(a)

$$
\bigcap_{n=1}^{\infty}\left(-\frac{1}{n}, \frac{1}{n}\right)
$$

(b)

$$
\bigcup_{n=1}^{\infty}(-n, n)
$$

(c)

$$
\bigcap_{n=1}^{\infty}\left(-\frac{1}{n}, 1+\frac{1}{n}\right)
$$

(d)

$$
\bigcup_{n=1}^{\infty}\left(-\frac{1}{n}, 2+\frac{1}{n}\right)
$$

(e)

$$
\begin{aligned}
& \bigcup_{n=1}^{\infty}\left(\mathbb{R} \backslash\left(-\frac{1}{n}, \frac{1}{n}\right)\right) \\
& \bigcap_{n=1}^{\infty}\left(\mathbb{R} \backslash\left[\frac{1}{n}, 2+\frac{1}{n}\right]\right)
\end{aligned}
$$

2. Show that if $A \subset B \subset \mathbb{R}$, and if B is bounded above, then A is bounded above, and $\sup A \leq \sup B$.
3. Let a_{0} and a_{1} be distinct real numbers.

Define $a_{n}=\frac{1}{2}\left(a_{n-1}+a_{n-2}\right)$ for each positive integer $n \geq 2$.
Show that $\left\{a_{n}\right\}$ is a Cauchy sequence.
4. Suppose x is an accumulation point of $\left\{a_{n}: n \in \mathbb{N}\right\}$.

Show that there is a subsequence of $\left\{a_{n}\right\}$ that converges to x.
5. Given the non-negative real numbers $a_{1}, a_{2}, \ldots, a_{r}$, let $a=\sup \left\{a_{i}\right\}$.

Prove that for any integer n,

$$
a^{n} \leq a_{1}^{n}+a_{2}^{n}+\cdots+a_{r}^{n} \leq r a^{n}
$$

and determine

$$
\lim _{n \rightarrow \infty}\left(a_{1}^{n}+a_{2}^{n}+\cdots+a_{r}^{n}\right)^{1 / n}
$$

6. Consider the sequence

$$
0,1,-1,2,-2, \frac{1}{2},-\frac{1}{2}, \ldots
$$

used to demonstrate the countability of the rationals.
a) What is the fiftieth term in this sequence?
b) Which term in the sequence is $-\frac{4}{5}$?

