NEW TUTORIAL 3.1 FOR MATH3402

Question 1. Let $\{a_n\}_{n=1}^{\infty}$ be a Cauchy sequence in a metric space in (X, d)and let $\{a_{i_k}\}_{n=1}^{\infty}$ be a subsequence of $\{a_n\}_{n=1}^{\infty}$. Show that

$$\lim_{n \to \infty} d(a_n, a_{i_n}) = 0.$$

Solution. Since $\{a_n\}_{n=1}^{\infty}$ is a Cauchy sequence, for any $\varepsilon > 0$, there is an integer $n_0 \in \mathbb{N}$ such that for $n, m > n_0$ we have $d(a_n, a_m) < \varepsilon$.

Now $i_n \ge n > n_0$ and therefore

$$d(a_n, a_{i_n}) < \varepsilon$$

This means that $\lim_{n\to\infty} d(a_n, a_{i_n}) = 0.$

Question 2. Let $\{a_n\}_{n=1}^{\infty}$ be a Cauchy sequence in a metric space in (X, d)and let $\{a_{i_n}\}_{n=1}^{\infty}$ be a subsequence of $\{a_n\}_{n=1}^{\infty}$ converging to $p \in X$. Show that $\{a_n\}_{n=1}^{\infty}$ also converges to p.

Solution. By the triangle inequality,

$$d(a_n, p) \le d(a_n, a_{i_n}) + d(a_{i_n}, p)$$

and therefore

$$\lim_{n \to \infty} d(a_n, p) \le \lim_{n \to \infty} d(a_n, a_{i_n}) + \lim_{n \to \infty} d(a_{i_n}, p).$$

By the question 1, we know $\lim_{n\to\infty} d(a_n, a_{i_n}) = 0$. Then

$$\lim_{n \to \infty} d(a_n, p) = 0 \quad \text{and so } a_n \to p. \quad \Box$$

Typeset by $\mathcal{A}_{\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$

Question 3. Let $\{b_n\}_{n=1}^{\infty}$ be a Cauchy sequence in a metric space X, and let $\{a_n\}_{n=1}^{\infty}$ be a sequence in X such that $d(a_n, b_n) < \frac{1}{n}$ for every $n \in \mathbb{N}$.

(i) Show that $\{a_n\}_{n=1}^{\infty}$ is also a Cauchy sequence in X.

(ii)Show that $\{a_n\}_{n=1}^{\infty}$ converges to $p \in X$ if and only if $\{b_n\}_{n=1}^{\infty}$ converges to $p \in X$.

Solution. (i) Since $\{b_n\}_{n=1}^{\infty}$ is a Cauchy sequence, $\forall \varepsilon > 0$, there is a $N \in \mathbb{N}$ such that for all integers $n, m \ge N$, we have

$$d(b_m, b_n) < \frac{1}{3\varepsilon}$$

There is N_1 such that $\frac{1}{n} \leq \frac{1}{3\varepsilon}$ for $n \geq N_1$. Choose $N_2 = \max\{N, N_1\}$. Then for $n, m \geq N_2$

$$d(a_m, a_n) \le d(a_m, b_m) + d(b_n, a_n) + d(b_m, b_n) < \varepsilon.$$

(ii) Suppose that $\lim_{n\to\infty} a_n = p$.

$$d(b_n, p) \le d(b_n, a_n) + d(a_n, p) \le \frac{1}{n} + d(a_n, p)$$

As $n \to \infty$, $\lim_{n \to \infty} d(b_n, p) = 0$, so $\lim_{n \to \infty} b_n = p$. \Box

Question 4. Let A be a subset of a metric space (X,d). Then $x \in X$ is a point of accumulation (limit point) of A if and only if there is an infinite sequence $\{a_n\}_{n=1}^{\infty}$ with $a_n \in A$ which converges to x.

Proof. Let $x \in X$ be the limit of the infinite sequence $\{a_n\}$ and G an open set of X which contains x. Then there is an $\varepsilon > 0$ with $B(x;\varepsilon) \subset G$. But there is an $N \in \mathbb{N}$ with $a_n \in B_{\varepsilon}(x)$ whenever n > N. At least one of these a_n must be a distict from x and so $A \cap B_{\varepsilon}(x) \setminus \{x\} \neq \emptyset$, this shows that $A \cap G \setminus \{x\} \neq \emptyset$. Thus x is a point of accumulation of A.

Conversely, let x be a point of accumulation of A. Then choose $a_0 \in A \cap B_1(x)$, with $a_0 \neq x$. Suppose that for $n \in \mathbb{N}$, $a_0, ..., a_n$ have chosen from A which are different. Put $r_n = \min\{d(a_1, x), ..., d(x_n, x), \frac{1}{n+1}\}$. Then $B_{r_n}(x)$ is an open set X contains x and hence there exists a point $a_{n+1} \neq x$ of A. Moreover, $a_{n+1} \neq a_j$ for $0 \leq j \leq n$ by the definition of r_n . The sequence $\{a_n\}$ converges to x. \Box