NEW TUTORIAL 3.1 FOR MATH3402

Question 1. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a Cauchy sequence in a metric space in (X, d) and let $\left\{a_{i_{k}}\right\}_{n=1}^{\infty}$ be a subsequence of $\left\{a_{n}\right\}_{n=1}^{\infty}$. Show that

$$
\lim _{n \rightarrow \infty} d\left(a_{n}, a_{i_{n}}\right)=0
$$

Solution. Since $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence, for any $\varepsilon>0$, there is an integer $n_{0} \in \mathbb{N}$ such that for $n, m>n_{0}$ we have $d\left(a_{n}, a_{m}\right)<\varepsilon$.

Now $i_{n} \geq n>n_{0}$ and therefore

$$
d\left(a_{n}, a_{i_{n}}\right)<\varepsilon
$$

This means that $\lim _{n \rightarrow \infty} d\left(a_{n}, a_{i_{n}}\right)=0$.
Question 2. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a Cauchy sequence in a metric space in (X, d) and let $\left\{a_{i_{n}}\right\}_{n=1}^{\infty}$ be a subsequence of $\left\{a_{n}\right\}_{n=1}^{\infty}$ converging to $p \in X$. Show that $\left\{a_{n}\right\}_{n=1}^{\infty}$ also converges to p.
Solution. By the triangle inequality,

$$
d\left(a_{n}, p\right) \leq d\left(a_{n}, a_{i_{n}}\right)+d\left(a_{i_{n}}, p\right)
$$

and therefore

$$
\lim _{n \rightarrow \infty} d\left(a_{n}, p\right) \leq \lim _{n \rightarrow \infty} d\left(a_{n}, a_{i_{n}}\right)+\lim _{n \rightarrow \infty} d\left(a_{i_{n}}, p\right) .
$$

By the question 1, we know $\lim _{n \rightarrow \infty} d\left(a_{n}, a_{i_{n}}\right)=0$. Then

$$
\lim _{n \rightarrow \infty} d\left(a_{n}, p\right)=0 \quad \text { and so } a_{n} \rightarrow p
$$

Question 3. Let $\left\{b_{n}\right\}_{n=1}^{\infty}$ be a Cauchy sequence in a metric space X, and let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence in X such that $d\left(a_{n}, b_{n}\right)<\frac{1}{n}$ for every $n \in \mathbb{N}$.
(i) Show that $\left\{a_{n}\right\}_{n=1}^{\infty}$ is also a Cauchy sequence in X.
(ii)Show that $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to $p \in X$ if and only if $\left\{b_{n}\right\}_{n=1}^{\infty}$ converges to $p \in X$.

Solution. (i) Since $\left\{b_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence, $\forall \varepsilon>0$, there is a $N \in \mathbb{N}$ such that for all integers $n, m \geq N$, we have

$$
d\left(b_{m}, b_{n}\right)<\frac{1}{3 \varepsilon}
$$

There is N_{1} such that $\frac{1}{n} \leq \frac{1}{3 \varepsilon}$ for $n \geq N_{1}$. Choose $N_{2}=\max \left\{N, N_{1}\right\}$. Then for $n, m \geq N_{2}$

$$
d\left(a_{m}, a_{n}\right) \leq d\left(a_{m}, b_{m}\right)+d\left(b_{n}, a_{n}\right)+d\left(b_{m}, b_{n}\right)<\varepsilon
$$

(ii) Suppose that $\lim _{n \rightarrow \infty} a_{n}=p$.

$$
d\left(b_{n}, p\right) \leq d\left(b_{n}, a_{n}\right)+d\left(a_{n}, p\right) \leq \frac{1}{n}+d\left(a_{n}, p\right)
$$

As $n \rightarrow \infty, \lim _{n \rightarrow \infty} d\left(b_{n}, p\right)=0$,so $\lim _{n \rightarrow \infty} b_{n}=p$.
Question 4. Let A be a subset of a metric space (X, d). Then $x \in X$ is a point of accumulation (limit point) of A if and only if there is an infinite sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ with $a_{n} \in A$ which converges to x.

Proof. Let $x \in X$ be the limit of the infinite sequence $\left\{a_{n}\right\}$ and G an open set od X which contains x. Then there is an $\varepsilon>0$ with $B(x ; \varepsilon) \subset G$. But there is an $N \in \mathbb{N}$ with $a_{n} \in B_{\varepsilon}(x)$ whenever $n>N$. At least one of these a_{n} must be a distict from x and so $A \cap B_{\varepsilon}(x) \backslash\{x\} \neq \emptyset$, this shows that $A \cap G \backslash\{x\} \neq \emptyset$. Thus x is a point of accumulation of A.

Conversely, let x be a point of accumulation of A. Then choose $a_{0} \in$ $A \cap B_{1}(x)$, with $a_{0} \neq x$. Suppose that for $n \in \mathbb{N}, a_{0}, \ldots, a_{n}$ have chosen from A which are different. Put $r_{n}=\min \left\{d\left(a_{1}, x\right), \ldots, d\left(x_{n}, x\right), \frac{1}{n+1}\right\}$. Then $B_{r_{n}}(x)$ is an open set X contains x and hence there exists a point $a_{n+1} \neq x$ of A. Moreover, $a_{n+1} \neq a_{j}$ for $0 \leq j \leq n$ by the definition of r_{n}. The sequence $\left\{a_{n}\right\}$ converges to x.

