Question 1. Let \(\{a_n\}_{n=1}^{\infty} \) be a Cauchy sequence in a metric space in \((X,d) \) and let \(\{a_{i_n}\}_{n=1}^{\infty} \) be a subsequence of \(\{a_n\}_{n=1}^{\infty} \). Show that
\[
\lim_{n \to \infty} d(a_n, a_{i_n}) = 0.
\]

Solution. Since \(\{a_n\}_{n=1}^{\infty} \) is a Cauchy sequence, for any \(\varepsilon > 0 \), there is an integer \(n_0 \in \mathbb{N} \) such that for \(n, m > n_0 \) we have \(d(a_n, a_m) < \varepsilon \).

Now \(i_n \geq n > n_0 \) and therefore
\[
d(a_n, a_{i_n}) < \varepsilon
\]
This means that \(\lim_{n \to \infty} d(a_n, a_{i_n}) = 0 \). \(\Box \)

Question 2. Let \(\{a_n\}_{n=1}^{\infty} \) be a Cauchy sequence in a metric space in \((X,d) \) and let \(\{a_{i_n}\}_{n=1}^{\infty} \) be a subsequence of \(\{a_n\}_{n=1}^{\infty} \) converging to \(p \in X \). Show that \(\{a_n\}_{n=1}^{\infty} \) also converges to \(p \).

Solution. By the triangle inequality,
\[
d(a_n, p) \leq d(a_n, a_{i_n}) + d(a_{i_n}, p)
\]
and therefore
\[
\lim_{n \to \infty} d(a_n, p) \leq \lim_{n \to \infty} d(a_n, a_{i_n}) + \lim_{n \to \infty} d(a_{i_n}, p).
\]
By the question 1, we know \(\lim_{n \to \infty} d(a_n, a_{i_n}) = 0 \). Then
\[
\lim_{n \to \infty} d(a_n, p) = 0 \quad \text{and so} \quad a_n \to p. \quad \Box
\]
Question 3. Let \(\{b_n\}_{n=1}^{\infty} \) be a Cauchy sequence in a metric space \(X \), and let \(\{a_n\}_{n=1}^{\infty} \) be a sequence in \(X \) such that \(d(a_n, b_n) < \frac{1}{n} \) for every \(n \in \mathbb{N} \).

(i) Show that \(\{a_n\}_{n=1}^{\infty} \) is also a Cauchy sequence in \(X \).

(ii) Show that \(\{a_n\}_{n=1}^{\infty} \) converges to \(p \in X \) if and only if \(\{b_n\}_{n=1}^{\infty} \) converges to \(p \in X \).

Solution. (i) Since \(\{b_n\}_{n=1}^{\infty} \) is a Cauchy sequence, \(\forall \varepsilon > 0 \), there is a \(N \in \mathbb{N} \) such that for all integers \(n, m \geq N \), we have

\[
d(b_m, b_n) < \frac{1}{3\varepsilon}.
\]

There is \(N_1 \) such that \(\frac{1}{n} \leq \frac{1}{3\varepsilon} \) for \(n \geq N_1 \). Choose \(N_2 = \max\{N, N_1\} \). Then for \(n, m \geq N_2 \)

\[
d(a_m, a_n) \leq d(a_m, b_m) + d(b_n, a_n) + d(b_m, b_n) < \varepsilon.
\]

(ii) Suppose that \(\lim_{n \to \infty} a_n = p \).

\[
d(b_n, p) \leq d(b_n, a_n) + d(a_n, p) \leq \frac{1}{n} + d(a_n, p)
\]

As \(n \to \infty \), \(\lim_{n \to \infty} d(b_n, p) = 0 \), so \(\lim_{n \to \infty} b_n = p \). □

Question 4. Let \(A \) be a subset of a metric space \((X, d) \). Then \(x \in X \) is a point of accumulation (limit point) of \(A \) if and only if there is an infinite sequence \(\{a_n\}_{n=1}^{\infty} \) with \(a_n \in A \) which converges to \(x \).

Proof. Let \(x \in X \) be the limit of the infinite sequence \(\{a_n\} \) and \(G \) an open set of \(X \) which contains \(x \). Then there is an \(\varepsilon > 0 \) with \(B(x; \varepsilon) \subset G \). But there is an \(N \in \mathbb{N} \) with \(a_n \in B_\varepsilon(x) \) whenever \(n > N \). At least one of these \(a_n \) must be a distinct from \(x \) and so \(A \cap B_\varepsilon(x) \setminus \{x\} \neq \emptyset \), this shows that \(A \cap G \setminus \{x\} \neq \emptyset \). Thus \(x \) is a point of accumulation of \(A \).

Conversely, let \(x \) be a point of accumulation of \(A \). Then choose \(a_0 \in A \cap B_1(x) \), with \(a_0 \neq x \). Suppose that for \(n \in \mathbb{N} \), \(a_0, ..., a_n \) have chosen from \(A \) which are different. Put \(r_n = \min\{d(a_1, x), ..., d(x_n, x), \frac{1}{n+1}\} \). Then \(B_{r_n}(x) \) is an open set \(X \) contains \(x \) and hence there exists a point \(a_{n+1} \neq x \) of \(A \). Moreover, \(a_{n+1} \neq a_j \) for \(0 \leq j \leq n \) by the definition of \(r_n \). The sequence \(\{a_n\} \) converges to \(x \). □