MATH 3402

Tutorial sheet 9

1. If

$$
A=\left(\begin{array}{ll}
a & b \\
0 & a
\end{array}\right)
$$

show that

$$
\|A\|_{2}=\frac{1}{2}\left(|b|+\sqrt{|b|^{2}+4|a|^{2}}\right),
$$

Ans.

$$
\begin{gathered}
A^{*} A=\left(\begin{array}{cc}
a^{*} & 0 \\
b^{*} & a^{*}
\end{array}\right)\left(\begin{array}{cc}
a & b \\
0 & a
\end{array}\right)=\left(\begin{array}{cc}
|a|^{2} & a^{*} b \\
b^{*} a & |b|^{2}+|a|^{2}
\end{array}\right) \\
\left|t I-A^{*} A\right|=\left(t-|a|^{2}\right)\left(t-\left(|a|^{2}+|b|^{2}\right)\right)-|a|^{2}|b|^{2}=t^{2}-\left(2|a|^{2}+|b|^{2}\right) t+|a|^{4} \\
t_{+}=\frac{1}{2}\left(2|a|^{2}+|b|^{2}+\sqrt{|b|^{4}+4|a|^{2}|b|^{2}}=\frac{1}{4}\left(\sqrt{|b|^{2}+4|a|^{2}}+|b|\right)^{2}\right. \\
\|A\|_{2}=\frac{1}{2}\left(|b|+\sqrt{|b|^{2}+4|a|^{2}}\right)
\end{gathered}
$$

and if

$$
A=\left(\begin{array}{ll}
0 & 1 \\
a & b
\end{array}\right)
$$

then

$$
\|A\|_{2}=\frac{1}{2}\left(\sqrt{(|a|+1)^{2}+|b|^{2}}+\sqrt{(|a|-1)^{2}+|b|^{2}}\right)
$$

Ans.

$$
\begin{gathered}
A^{*} A=\left(\begin{array}{cc}
0 & a^{*} \\
1 & b^{*}
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
a & b
\end{array}\right)=\left(\begin{array}{cc}
|a|^{2} & a^{*} b \\
b^{*} a & 1+|b|^{2}
\end{array}\right) \\
\left|t I-A^{*} A\right|=\left(t-|a|^{2}\right)\left(t-\left(1+|b|^{2}\right)\right)-|a|^{2}|b|^{2}=t^{2}-\left(1+|a|^{2}+|b|^{2}\right) t+|a|^{2} \\
t_{+}=\frac{1}{2}\left(1+|a|^{2}+|b|^{2}+\sqrt{\left(|a|^{2}+2|a|+1+|b|^{2}\right)\left(|a|^{2}-2|a|+1+|b|^{2}\right)}\right) \\
=\frac{1}{4}\left(\sqrt{(|a|+1)^{2}+|b|^{2}}+\sqrt{(|a|-1)^{2}+|b|^{2}}\right)^{2} \\
\|A\|_{2}=\frac{1}{2}\left(\sqrt{(|a|+1)^{2}+|b|^{2}}+\sqrt{(|a|-1)^{2}+|b|^{2}}\right)
\end{gathered}
$$

These two results are particular cases of

$$
\left\|\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right\|_{2}=\frac{1}{2}\left(\sqrt{S^{2}+2|\Delta|}+\sqrt{S^{2}-2|\Delta|}\right)
$$

where

$$
\begin{gathered}
S^{2}=|a|^{2}+|b|^{2}+|c|^{2}+|d|^{2} \\
\text { and } \Delta=a d-b c
\end{gathered}
$$

In fact, we have

$$
\begin{gathered}
m\|x\| \leq\|A x\| \leq M\|x\| \\
\text { where } m==\frac{1}{2}\left(\sqrt{S^{2}+2|\Delta|}-\sqrt{S^{2}-2|\Delta|}\right)
\end{gathered}
$$

and A is invertible iff $\Delta \neq 0$.
2. If $C(0,1)$ is the set of functions continuous on $[0,1]$ with the uniform metric, and $D(0,1)$ is the set of continuously differentiable functions on $[0,1]$ with the same metric;
(a) Is $T: C \rightarrow D$ given by $T(f)(x)=\int_{0}^{x} f(t) d t$ continuous?

Ans. If $\|f\| \leq 1$,

$$
\begin{gathered}
\left|\int_{0}^{x} f(t) d t\right| \leq \int_{0}^{x}|f(t)| d t \leq x \\
\left\|\int_{0}^{x} f(t) d t\right\| \leq 1 \\
\|T\|=1
\end{gathered}
$$

and T is continuous.
(b) Is $T: D \rightarrow C$ given by $T(f)(x)=f^{\prime}(x)$ continuous?

Ans. Consider $f_{n}=\sin n x \in D$
$\left\|f_{n}\right\|=1$, but $\left\|f_{n}^{\prime}\right\|=\|n \cos n x\|=n$.
Therefore, for any $M>0$, if $n>M$

$$
\left\|T\left(f_{n}\right)\right\|>M\left\|f_{n}\right\|
$$

and T is not continuous.
These results are a variant of the results that a uniformly convergent series can be integrated term by term but not necessarily differentiated term by term.
3. Let T be a linear transformation from ℓ^{1} to ℓ^{1}.

Set $e_{i}=\left\{\delta_{i j}\right\}$ and $a_{i}=T\left(e_{i}\right)$.
Show that $\|T\|=\sup _{i}\left\|a_{i}\right\|_{1}$.
Ans.
For $x=\left\{\xi_{1}\right\} \in \ell^{1}$, let $x_{n}=\sum_{i=1}^{n} \xi_{i} e_{i}$.

$$
\begin{gathered}
T\left(x_{n}\right)=\sum_{i=1}^{n} \xi_{i} T\left(e_{i}\right) \\
\left\|T\left(x_{n}\right)\right\| \leq \sum_{i=1}^{n}\left|\xi_{i}\right| \| a_{i}| | \leq\left(\sup _{i}\left\|a_{i}\right\|\right) \sum_{i=1}^{n}\left|\xi_{i}\right|
\end{gathered}
$$

Taking the limit as $n \rightarrow \infty$, we have

$$
\left\|T\left(x_{n}\right)\right\| \leq\left(\sup _{i}\left\|a_{i}\right\|\right)\|x\|
$$

For any $\epsilon>0$, we can find a_{I} such that

$$
\left\|a_{I}\right\|>\sup _{i}\left\|a_{i}\right\|-\epsilon
$$

so that

$$
\left\|T\left(e_{I}\right)\right\|>\left(\sup _{i}\left\|a_{i}\right\|-\epsilon\right)\left\|e_{I}\right\|
$$

Therefore

$$
\left(\sup _{i}\left\|a_{i}\right\|-\epsilon\right)<\|T\| \leq \sup _{i}\left\|a_{i}\right\|
$$

and the result follows.
4. Let X be a finite dimensional normed linear space, and Y a normed linear space.

If T is a linear operator from X to Y, show that T is continuous.

Ans.

Since X is finite dimensional, X is linearly homeomorphic to $\ell^{1}(n)$.
Let f be the continuous invertible linear function defining the homeomorphism.
We can represent $T: X \rightarrow Y$ as $S=T \circ f: \ell^{1} \rightarrow Y$, where S is a linear transformation.

If $\left(e_{i}\right)$ is the basis for ℓ^{1} and $a_{i}=S\left(e_{i}\right)$,

$$
\|S(x)\|=\| S\left(\left\{\xi_{i}\right\}\left\|\leq \sum_{I=1}^{n}\left|\xi_{i}\right|\right\| a_{i}\left\|\leq\left(\max _{i}\left\|a_{i}\right\|\right)\right\| x \|\right.
$$

Therefore S is continuous and so $T=S \circ f^{-1}$ is also continuous.

