MATH 3402

Tutorial Sheet 7
Solutions

1. The function $f:(A, d) \rightarrow(A, d)$ has the property that

$$
d(f(x), f(y))<d(x, y) \forall x \neq y \in A .
$$

Show that if f has a fixed point in A then it is unique.
Ans. Suppose that a and b are fixed points of f in A.
Then

$$
d(a, b)=d(f(a), f(b))<d(a, b) \text { if } a \neq b .
$$

Since this is impossible, we must have $a=b$.
(Note that this does not prove that a fixed point actually exists.)
2. The real function f is continuous from $[a, b]$ to $[a, b]$.

Show that f has a fixed point in $[a, b]$.
Ans. If either $f(a)=a$ or $f(b)=b$ there is nothing to prove.
Therefore assume $f(a)>a$ and $f(b)<b$.
The function $\phi(x)=x-f(x)$ is continuous on $[a, b]$, and

$$
\phi(a)<0 ; \phi(b)>0 .
$$

Therefore, by the Intermediate Value Theorem there is $c \in(a, b)$ such that

$$
\phi(c)=0 ; f(c)=c .
$$

3. Determine to 3 dp the solution of the equation

$$
x^{3}=6 x+6
$$

(The solution is approximately 3.)
Ans. If $F(x)=x^{3}-6 x-6, F^{\prime}(x)=3 x^{2}-6, F^{\prime}(3)=21$.
Therefore consider

$$
f(x)=x-\frac{1}{21} F(x)=\frac{1}{21}\left(6+27 x-x^{3}\right)
$$

with $x_{0}=3$.

$$
\begin{aligned}
& x_{1}=2.857 \\
& x_{2}=2.849 \\
& x_{3}=2.847 \\
& x_{4}=2.847
\end{aligned}
$$

4. For fixed $a \in \mathbb{R}$, we define the mapping from $\mathbb{R} \backslash\{-1\}$ to \mathbb{R} by

$$
f(x)=1+\frac{a}{1+x} .
$$

(a) For which values of a does this mapping have a fixed point?

Ans: If $f(x)=x$, then

$$
\begin{gathered}
x=1+\frac{a}{1+x} \\
(x-1)(x+1)=a \\
x^{2}=a+1 \\
x= \pm \sqrt{a+1}
\end{gathered}
$$

which requires $a \geq-1$.
(b) For which values of a is the mapping a (local) contraction mapping?

Ans:

$$
f^{\prime}(x)=-\frac{a}{(1+x)^{2}}
$$

When $x=\sqrt{a+1}$,

$$
\begin{aligned}
\left|f^{\prime}(\sqrt{a+1})\right| & =\frac{|a|}{(1+\sqrt{a+1})^{2}} \\
& =\frac{|\sqrt{a+1}-1|}{\sqrt{a+1}+1} \\
& <1 \text { if } a>-1
\end{aligned}
$$

When $x=-\sqrt{a+1}$,

$$
\begin{aligned}
\left|f^{\prime}(-\sqrt{a+1})\right| & =\frac{|a|}{(1-\sqrt{a+1})^{2}} \\
& =\frac{\sqrt{a+1}+1}{|\sqrt{a+1}-1|} \\
& \geq 1
\end{aligned}
$$

Therefore we get a contraction mapping if $a>-1$. The sequence $\left\{x_{n+1}=f\left(x_{n}\right)\right\}$ converges to $\sqrt{a+1}$.
(c) Starting with $w_{0}=1$, for which values of a does the sequence generated by

$$
w_{n+1}=f\left(w_{n}\right)
$$

converge?
Ans: In addition to the values mentioned above, the sequence also converges for $a=-1$, albeit slowly.

The sequence generates the continued fraction expansion

$$
\sqrt{1+a}=1+\frac{a}{2+} \frac{a}{2+} \frac{a}{2+} \ldots
$$

(d)If we choose $a \in \mathbb{C}$ instead, show that the function is a contraction mapping provided $\operatorname{Re}(\sqrt{1+a}) \geq \epsilon>0$.

Ans: Let $\sqrt{1+a}=\alpha+i \beta$, where $\alpha \geq \epsilon$.

$$
\begin{aligned}
\left|f^{\prime}(\sqrt{1+a})\right|^{2} & =\frac{|\alpha+i \beta-1|^{2}}{|\alpha+i \beta+1|^{2}} \\
& =\frac{(\alpha-1)^{2}+\beta^{2}}{(\alpha+1)^{2}+\beta^{2}} \\
& =1-\frac{4 \alpha}{\left(\alpha^{2}+1\right)^{2}+\beta^{2}}<1
\end{aligned}
$$

5. Let $C\left(0, \frac{1}{2}\right)$ be the set of real functions continuous on $\left[0, \frac{1}{2}\right]$, together with the uniform sup metric.

Define $f: C\left(0, \frac{1}{2}\right) \rightarrow C\left(0, \frac{1}{2}\right)$ by

$$
(f(x))(t)=t(x(t)+1) .
$$

Show that f is a contraction mapping, and determine its fixed point.

Ans.

$$
\begin{aligned}
\|f(x)-f(y)\| & =\sup _{0 \leq t \leq \frac{1}{2}}|t x-t y| \\
& \leq \frac{1}{2} \sup _{0 \leq t \leq \frac{1}{2}}|x-y|=\frac{1}{2}\|x-y\|
\end{aligned}
$$

If $x=t x+t,(1-t) x=t$,

$$
x=\frac{t}{1-t} .
$$

Verify that the sequence starting with $x_{0}(t)=t$ converges to the fixed point.

Ans.

$$
\begin{gathered}
x_{0}=t \\
x_{1}=t^{2}+t \\
x_{2}=t^{3}+t^{2}+t \\
x_{n}=\sum_{i=1}^{n+1} t^{i}=\frac{t-t^{n+2}}{1-t} \\
\left\|x_{n}-\frac{t}{1-t}\right\|=\left\|\frac{t^{n+2}}{1-t}\right\| \leq 2\left(\frac{1}{2}\right)^{n+2} \rightarrow 0 \text { as } n \rightarrow \infty
\end{gathered}
$$

