MATH 3402

TUTORIAL SHEET 6 SOLUTIONS

1. Show that $Cl(A \cup B) = Cl(A) \cup Cl(B)$.

Ans.

If $x \in Cl(A)$, then every neighbourhood of x contains a point of A, and therefore of $A \cup B$. Therefore $Cl(A) \subset Cl(A \cup B)$

Similarly, $Cl(B) \subset Cl(A \cup B)$, and hence $Cl(A) \cup Cl(B) \subset Cl(A \cup B)$.

If $x \in Cl(A \cup B)$, then every neighbourhood of x contains a point of $A \cup B$ and therefore it contains a point of $Cl(A) \cup Cl(B)$.

Therefore $x \in Cl(Cl(A) \cup Cl(B))$, and $Cl(A \cup B) \subset Cl(Cl(A) \cup Cl(B))$. But $Cl(A) \cup Cl(B)$ is closed, so that $Cl(Cl(A) \cup Cl(B)) = Cl(A) \cup Cl(B)$. Hence $Cl(A \cup B) \subset Cl(A) \cup Cl(B)$, and so the sets are equal.

2. Verify that the collection \mathcal{T}_Y defined for the one-point compactification process is a topology on Y.

Ans. We have already seen that $Y \in \mathcal{T}_Y$, and since $\phi \in \mathcal{T}_X$, $\phi \in \mathcal{T}_Y$ also.

If U_1 and U_2 are in \mathcal{T}_Y , then

(a) if they are both in \mathcal{T}_X ,

$$U_1 \cap U_2 \in \mathcal{T}_X \subset \mathcal{T}_Y$$

(b) if U_1 is in \mathcal{T}_X and $U_2 = W_2 \cup \{y\}$, then

$$U_1 \cap U_2 = U_1 \cap W_2 \in \mathcal{T}_X \subset \mathcal{T}_Y$$

(c) if neither U_1 nor U_2 is in \mathcal{T}_X , then $U_1 = W_1 \cup \{y\}$ and $U_2 = W_2 \cup \{y\}$ where $X \setminus W_1$ and $X \setminus W_2$ are compact in X. Therefore

$$U_1 \cap U_2 = (W_1 \cap W_2) \cup \{y\} = W_3 \cup \{y\}$$

where $X \setminus W_3 = (X \setminus W_1) \cup (X \setminus W_2)$ is compact in X. Therefore $U_1 \cap U_2 \in \mathcal{T}_Y$. For

 $\cup_i U_i$,

if all the sets are in \mathcal{T}_X then so is their union, and hence the union is in $\mathcal{T}_X \subset \mathcal{T}_Y$. Otherwise

$$\cup_i U_i = (\cup_i (U_i \cap X)) \cup \{y\} = W \cup \{y\}$$

where $W \in \mathcal{T}_X$ and at least one of the sets $U_i \cap X$ has a compact complement in X. Denote this set by W'.

 $X \setminus W$ is closed in X, and is a subset of $X \setminus W'$. Therefore $X \setminus W$ is compact in X, and $W \cup \{y\} \in \mathcal{T}_Y$.

1

3. Let $Y = \mathbb{R} \cup \{y\}$ be the one-point compactification of \mathbb{R} with the usual metric. Show that $f: Y \to Y$ defined by

$$f(x) = \frac{1}{x} ; x \in \mathbb{R} \setminus \{0\} ;$$

$$f(0) = y \qquad ; \qquad f(y) = 0$$

is a continuous function on Y.

Ans. The set of all open intervals in \mathbb{R} form a basis for \mathbb{R} .

We can extend this to a basis for Y by adding all open sets of the form $(-\infty, b) \cup$ $\{y\} \cup (a,\infty)$ where $b \le 0 \le a$.

Then

$$f^{-1}((a,b)) = \left(\frac{1}{b}, \frac{1}{a}\right) \text{ if } 0 < a < b \text{ or } a < b < 0$$
$$f^{-1}((a,b)) = \left(-\infty, \frac{1}{a}\right) \cup \{y\} \cup \left(\frac{1}{b}, \infty\right) \text{ if } a < 0 < b$$

and

$$f^{-1}((-\infty, b) \cup \{y\} \cup (a, \infty)) = (\frac{1}{b}, \frac{1}{a})$$

where $\frac{1}{b} = -\infty$ if b = 0 and $\frac{1}{a} = \infty$ if a = 0. Since the inverse images of the basis sets are open in Y, f is continuous.

4. Given two topologies \mathcal{T}_1 , \mathcal{T}_2 on a set A, with $\mathcal{T}_1 \subset \mathcal{T}_2$, prove that if (A, \mathcal{T}_2) is compact then so is (A, \mathcal{T}_1) .

Ans. Since $\mathcal{T}_1 \subset \mathcal{T}_2$, any open cover of A by elements of \mathcal{T}_1 is an open cover by elements of \mathcal{T}_2 .

Therefore there is a finite subcover, and (A, \mathcal{T}_1) is compact.

5. Which of the following subsets of \mathbb{R} , \mathbb{R}^2 are compact?

 $[0,\infty)$ (ii)

(iii)
$$\mathbb{Q} \cap [0,1]$$

(iv)
$$\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$$

(v)
$$\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$$

(vi)
$$\{(x,y) \in \mathbb{R}^2 : |x| + |y| \le 1\}$$

(vii)
$$\{(x, y) \in \mathbb{R}^2 : x \ge 1, 0 \le y \le 1/x\}$$

Ans.

(i) Not closed therfore not compact.

- (ii) Not bounded therefore not compact.
- (iii) Not closed therefore not compact.
- (iv) Closed and bounded, therefore compact.
- (v) Not closed therefore not compact.
- (vi) Closed and bounded, therefore compact.

(vii) Not bounded therefore not compact.

6. Let A be a non-empty compact subset of the metric space (X, d), let L be any fixed positive real number, and let $F : A \to \mathbb{R}$ be a function with the property that

$$|F(x) - F(y)| \le Ld(x, y) \ \forall \ x, y \in A .$$

Show that for any sequence a_1, a_2, a_3, \ldots in A, the real sequence

$$F(a_1), F(a_2), F(a_3), \ldots$$

has a convergent subsequence with limit $F(a_0)$ for some $a_0 \in A$.

Deduce that the set $F(A) = \{F(a) : a \in A\}$ is compact in \mathbb{R} .

Hence show that there is $a^* \in A$ such that $F(a^*) \leq F(a)$ for $a \in A$.

Ans. Since A is a compact set in a metric space, it is bounded.

That is, for fixed $a \in A$, $d(x, a) \leq K$ for all $x \in A$.

Therefore $|F(x) - F(a)| \leq LK$ for all $F(x) \in F(A)$, and F(A) is bounded in \mathbb{R} . It follows from the Bolzano Weierstrass theorem that the real sequence $\{F(a_i)\}$ has a limit point in \mathbb{R} .

We can choose a subsequence $\{a_{i_n}\}$ such that $\{F(a_{i_n})\}$ converges to this limit. This subsequence is an infinite subset in a compact set, so that it has a limit point $a_0 \in A$.

Given any $\epsilon > 0$, there are infinitely many term of the subsequence such that $d(a_{i_n}, a_0) < \frac{\epsilon}{L}$.

For these terms we have $|F(a_{i_n}) - F(a_0)| < \epsilon$ so that the limit of the convergent subsequence is $F(a_0)$.

The same argument shows that any limit point of F(A) is in F(A), so that F(A) is closed.

By the Heine-Borel Theorem, F(A) is compact.

(Alternatively, we could note that F is uniformly continuous on A.)

Since F(A) is bounded it has a greatest lower bound, and since F(A) is closed this bound is in the set.

That is, there exists $a^* \in A$ such that $F(a^*) \leq F(a); a \in A$.