1. If \(f \) is a many-one transformation of \(A \) into \(B \), and \(A_1 \) and \(A_2 \) are subsets of \(A \), prove that

(a) \(f(A_1 \cup A_2) = f(A_1) \cup f(A_2) \);
(b) \(f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2) \).

In the second case, show that equality holds for all \(A_1 \) and \(A_2 \) if and only if \(f \) is a one-one transformation.

Ans: If \(x \in A_1 \cup A_2 \), then \(x \in A_1 \) or \(x \in A_2 \).
Therefore, \(f(x) \in f(A_1) \) or \(f(x) \in f(A_2) \).
This means \(f(A_1 \cup A_2) \subset f(A_1) \cup f(A_2) \).

If \(y \in f(A_1) \cup f(A_2) \), then \(y \in f(A_1) \) or \(y \in f(A_2) \).
Therefore \(y = f(x) \) where \(x \in A_1 \) or \(x \in A_2 \); i.e. \(x \in A_1 \cup A_2 \).
This means that \(f(A_1) \cup f(A_2) \subset f(A_1 \cup A_2) \).
Together these results mean \(f(A_1 \cup A_2) = f(A_1) \cup f(A_2) \).

If \(x \in A_1 \cap A_2 \), then \(x \in A_1 \) and \(x \in A_2 \).
Therefore, \(f(x) \in f(A_1) \) and \(f(x) \in f(A_2) \).
This means that \(f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2) \).

If \(f \) is many-one, then there are at least two distinct elements \(x_1 \neq x_2 \) such that \(f(x_1) = f(x_2) \)(= \(y \) say).
Setting \(A_1 = \{x_1\} \) and \(A_2 = \{x_2\} \), we see that

\[A_1 \cap A_2 = \phi ; f(A_1 \cap A_2) = \phi \]

while

\[f(A_1) \cap f(A_2) = \{y\} \neq \phi . \]

However, if \(f \) is 1-1, then \(f^{-1}(y) \) is uniquely defined, and if \(y \in f(A_1) \cap f(A_2) \), \(y \)
is in both \(f(A_1) \) and \(f(A_2) \).
Therefore \(f^{-1}(y) \) is in both \(A_1 \) and \(A_2 \), so that

\[f(A_1) \cap f(A_2) \subset f(A_1 \cap A_2) . \]

Combined with the first result this gives equality.

2. Let \(A \) be the set of real numbers, and let a subset of \(A \) be called open if it is \(A \) or the null set or if it consists of points \(x \) such that \(x > k \) for some \(k \).

Prove that the open sets defined in this way form a topology for \(A \).

Ans: Denote the interval \((k, \infty)\) by \(S_k \). In this notation, \(A = S_{-\infty} \) and \(\phi = S_{\infty} \). Denote by \(\mathcal{T} \) this collection of sets.

We need to show that \(\mathcal{T} \) satisfies the axioms of a topology.
By construction, \(\phi \in \mathcal{T} \) and \(A \in \mathcal{T} \).
Consider the intersection of a finite number of sets in T. If ϕ is one of these, then the intersection is also ϕ which is an element of T.

Otherwise, let the sets be \{${S_{\alpha_1}, \ldots, S_{\alpha_n}}$\}.

If α_I is the maximum of \{${\alpha_1, \ldots, \alpha_n}$\}, then

$$I = \bigcap_{i=1}^n S_{\alpha_i} = S_{\alpha_I}$$

since, if $x \in I$, $x \in S_{\alpha_I}$, while if $x \in S_{\alpha_i}$, then $x > \alpha_I$, so that $x > \alpha_i$ for $i = 1 \ldots n$. Therefore $x \in S_{\alpha_i}$ for all i and hence $x \in I$.

Consider the union of an arbitrary number of sets in T.

Let the sets be S_{α}.

If the set of values \{${\alpha}$\} is not bounded below, then for any $x \in A$, there is $\alpha^* < x$, and $x \in S_{\alpha^*}$. Therefore the union of the sets is A which is in T.

Otherwise, let $a = \inf\{\alpha\}$. If $x > a$, then x is not a lower bound for $\{\alpha\}$, so that for some α^*, $x > \alpha^* \geq a$.

Therefore

$$S_a \subset \bigcup_{\alpha} S_{\alpha}$$

On the other hand $\alpha \geq a$ for all α, so that

$$S_{\alpha} \subset S_a : \bigcup_{\alpha} S_{\alpha} \subset S_a$$

Combining these results, we see that the union is $S_a \in T$.

Since T satisfies the axioms, it is a topology for A.

3. If $M_1 = (A_1, d_1)$ and $M_2 = (A_2, d_2)$ are two metric spaces, show that the function defined by

$$d((x_1, x_2), (y_1, y_2)) = d_1(x_1, y_1) + d_2(x_2, y_2)$$

where $x_1, y_1 \in A_1$ and $x_2, y_2 \in A_2$ is a metric on $A_1 \times A_2$.

Show that the topology generated by this metric is the product topology.

Ans: d satisfies the axioms for a metric;

(a) $$d((y_1, y_2), (x_1, x - 2)) = d_1(y_1, x_1) + d_2(y_2, x_2)$$

$$= d_1(x_1, y_1) + d_2(x_2, y_2)$$

$$= d((x_1, x_2), (y_1, y_2))$$

(b) $$d_1(x_1, y_1) \geq 0 \ , \ d_2(x_2, y_2) \geq 0 \ ,$$

therefore $$d((x_1, x_2), (y_1, y_2)) \geq 0$$.

(c) $$d((x_1, x_2), (y_1, y_2)) = 0$$ iff $$d_1(x_1, y_1) = 0$$ and $$d_2(x_2, y_2) = 0$$

i.e. iff $x_1 = y_1$ and $x_2 = y_2$
(d) \[d((x_1, x_2), (z_1, z_2)) = d_1(x_1, z_1) + d_2(x_2, z_2) \]
\[\leq d_1(x_1, y_1) + d_1(y_1, z_1) + d_2(x_2, y_2) + d_2(y_2, z_2) \]
\[= d((x_1, x_2), (y_1, y_2)) + d((y_1, y_2), (z_1, z_2)) \]

Let \(U \) be open in \((A_1, d_1)\) and \(V \) be open in \((A_2, d_2)\). If \((x_0, y_0) \in U \times V\), then \(x_0 \in U\) and \(y_0 \in V\). Therefore there are positive constants \(\epsilon_1 \) and \(\epsilon_2 \) such that \(N_1 = \{ x \in A_1; d_1(x, x_0) < \epsilon_1 \} \subset U \) and \(N_2 = \{ y \in A_2; d_2(y, y_0) < \epsilon_2 \} \subset V \).

Then if \(\epsilon = \min(\epsilon_1, \epsilon_2) \), \(\{(x, y) \in A_1 \times A_2; d((x, y), (x_0, y_0)) < \epsilon \} \subset N_1 \times N_2 \subset U \times V \).

Therefore \(U \times V \) is open in \(A_1 \times A_2 \).

Since the product topology consists of unions of sets of this form, every set in the product topology is in the topology generated by \(d \).

Conversely, if \(W \) is in the topology generated by \(d \), then for each \((x_0, y_0) \in W\) there is \(\epsilon > 0 \) such that \[N = \{(x, y) \in A_1 \times A_2; d((x, y), (x_0, y_0)) < \epsilon \} \subset W \]

Let \[N_1 = \{ x \in A_1; d_1(x, x_0) < \frac{1}{2} \epsilon \} \subset U \]
and \[N_2 = \{ y \in A_2; d_2(y, y_0) < \frac{1}{2} \epsilon \} \subset V \]

Then \(N_1 \times N_2 \) is in the product topology, and \[N_1 \times N_2 \subset N \subset W \]

Since \[W = \bigcup_{(x_0, y_0) \in W} N_1 \times N_2 \]
\(W \) is in the product topology. Therefore these two topologies are identical.
4. If S, T are topological spaces homeomorphic respectively to S', T', prove that $S \times T$ is homeomorphic to $S' \times T'$.

Ans: Since S is homeomorphic to S' there is a bi-continuous 1-1 map f from S to S'.

Similarly there is a bi-continuous 1-1 map g from T to T'.

Let F be the map from $S \times T$ to $S' \times T'$ defined by $F(x, y) = (f(x), g(y))$.

If $F(x_1, y_1) = F(x_2, y_2)$, then $f(x_1) = f(x_2)$ and $g(y_1) = g(y_2)$. Since f and g are 1-1, $(x_1, y_1) = (x_2, y_2)$ and F is also 1-1.

If W' is open in $S' \times T'$, then W' is the union of sets of the form $U' \times V'$, where U' is open in S' and V' is open in T'.

Let $U = f^{-1}(U')$ and $V = g^{-1}(V')$. These are open sets in S and T respectively.

Then $F^{-1}(U' \times V') = U \times V$ is open in $S \times T$.

Therefore

$$F^{-1}(W') = F^{-1}\left(\bigcup U' \times V'\right)$$

$$= \bigcup (F^{-1}(U') \times V')$$

$$= \bigcup U \times V$$

is open in $S \times T$.

Therefore F is continuous from $S \times T$ to $S' \times T'$.

Similarly F^{-1} is continuous, so that F is a homeomorphism from $S \times T$ to $S' \times T'$.