MATH 3402 Tutorial sheet 5 Solutions

1. If f is a many-one transformation of A into B, and A_1 and A_2 are subsets of A, prove that

(a)
$$f(A_1 \cup A_2) = f(A_1) \cup f(A_2);$$

(b)
$$f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2) .$$

In the second case, show that equality holds for all A_1 and A_2 if and only if f is a one-one transformation.

Ans: If $x \in A_1 \cup A_2$, then $x \in A_1$ or $x \in A_2$. Therefore, $f(x) \in f(A_1)$ or $f(x) \in f(A_2)$. This means $f(A_1 \cup A_2) \subset f(A_1) \cup f(A_2)$. If $y \in f(A_1) \cup f(A_2)$, then $y \in f(A_1)$ or $y \in f(A_2)$. Therefore y = f(x) where $x \in A_1$ or $x \in A_2$; i.e. $x \in A_1 \cup A_2$. This means that $f(A_1) \cup f(A_2) \subset f(A_1 \cup A_2)$. Together these results mean $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$.

If $x \in A_1 \cap A_2$, then $x \in A_1$ and $x \in A_2$. Therefore, $f(x) \in f(A_1)$ and $f(x) \in f(A_2)$. This means that $f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2)$.

If f is many-one, then there are at least two distinct elements $x_1 \neq x_2$ such that $f(x_1) = f(x_2) (= y \text{ say})$.

Setting $A_1 = \{x_1\}$ and $A_2 = \{x_2\}$, we see that

$$A_1 \cap A_2 = \phi \; ; f(A_1 \cap A_2) = \phi$$

while

$$f(A_1) \cap f(A_2) = \{y\} \neq \phi$$
.

However, if f is 1-1, then $f^{-1}(y)$ is uniquely defined, and if $y \in f(A_1) \cap f(A_2)$, y is in both $f(A_1)$ and $f(A_2)$.

Therefore $f^{-1}(y)$ is in both A_1 and A_2 , so that

$$f(A_1) \cap f(A_2) \subset f(A_1 \cap A_2) \ .$$

Combined with the first result this gives equality.

2. Let A be the set of real numbers, and let a subset of A be called open if it is A or the null set or if it consists of points x such that x > k for some k.

Prove that the open sets defined in this way form a topology for A.

Ans: Denote the interval (k, ∞) by S_k . In this notation, $A = S_{-\infty}$ and $\phi = S_{\infty}$. Denote by \mathcal{T} this collection of sets.

We need to show that \mathcal{T} satisfies the axioms of a topology.

By construction, $\phi \in \mathcal{T}$ and $A \in \mathcal{T}$.

Consider the intersection of a finite number of sets in \mathcal{T} .

If ϕ is one of these, then the intersection is also ϕ which is an element of \mathcal{T} . Otherwise, let the sets be $\{S_{\alpha_1}, \ldots, S_{\alpha_n}\}$.

If α_I is the maximum of $\{\alpha_1, \ldots, \alpha_n\}$, then

$$I = \bigcap_{i=1}^{n} S_{\alpha_i} = S_{\alpha_I}$$

since, if $x \in I$, $x \in S_{\alpha_I}$, while if $x \in S_{\alpha_I}$, then $x > \alpha_I$, so that $x > \alpha_i$ for $i = 1 \dots n$. Therefore $x \in S_{\alpha_i}$ for all *i* and hence $x \in I$.

Consider the union of an arbitrary number of sets in \mathcal{T} . Let the sets be S_{α} .

If the set of values $\{\alpha\}$ is not bounded below, then for any $x \in A$, there is $\alpha^* < x$, and $x \in S_{\alpha^*}$. Therefore the union of the sets is A which is in \mathcal{T} .

Otherwise, let $a = \inf\{\alpha\}$. If x > a, then x is not a lower bound for $\{\alpha\}$, so that for some α^* , $x > \alpha^* \ge a$.

Therefore

$$S_a \subset \bigcup_{lpha} S_a$$

On the other hand $\alpha \geq a$ for all α , so that

$$S_{\alpha} \subset S_a \ ; \bigcup_{\alpha} S_{\alpha} \subset S_a$$

Combining these results, we see that the union is $S_a \in \mathcal{T}$. Since \mathcal{T} satisfies the axioms, it is a topology for A.

3. If $M_1 = (A_1, d_1)$ and $M_2 = (A_2, d_2)$ are two metric spaces, show that the function defined by

$$d((x_1, x_2), (y_1, y_2)) = d_1(x_1, y_1) + d_2(x_2, y_2)$$

where $x_1, y_1 \in A_1$ and $x_2, y_2 \in A_2$ is a metric on $A_1 \times A_2$.

Show that the topology generated by this metric is the product topology.

Ans: *d* satisfies the axioms for ametric;

(a)
$$d((y_1, y_2), (x_1, x - 2)) = d_1(y_1, x_1) + d_2(y_2, x_2)$$
$$= d_1(x_1, y_1) + d_2(x_2, y_2)$$
$$= d((x_1, x_2), (y_1, y_2))$$

(b)
$$d_1(x_1, y_1) \ge 0$$
, $d_2(x_2, y_2) \ge 0$,
therefore $d((x_1, x_2), (y_1, y_2)) \ge 0$

(c)
$$d((x_1, x_2), (y_1, y_2)) = 0$$
 iff $d_1(x_1, y_1) = 0$ and $d_2(x_2, y_2) = 0$
i.e. iff $x_1 = y_1$ and $x_2 = y_2$

(d)
$$d((x_1, x_2), (z_1, z_2)) = d_1(x_1, z_1) + d_2(x_2, z_2)$$
$$\leq d_1(x_1, y_1) + d_1(y_1, z_1) + d_2(x_2, y_2) + d_2(y_2, z_2)$$
$$= d((x_1, x_2), (y_1, y_2)) + d((y_1, y_2), (z_1, z_2))$$

Let U be open in (A_1, d_1) and V be open in (A_2, d_2) . If $(x_0, y_0) \in U \times V$, then $x_0 \in U$ and $y_0 \in V$. Therefore there are positive constants ϵ_1 and ϵ_2 such that

$$N_1 = \{ x \in A_1; d_1(x, x_0) < \epsilon_1 \} \subset U$$

and

$$N_2 = \{y \in A_2; d_2(y, y_0) < \epsilon_2\} \subset V$$

Then if $\epsilon = \min(\epsilon_1, \epsilon_2)$,

$$\{(x,y) \in A_1 \times A_2; d((x,y), (x_0, y_0)) < \epsilon\} \subset N_1 \times N_2 \subset U \times V$$

Therefore $U \times V$ is open in $A_1 \times A_2$.

Since the product topology consists of unions of sets of this form, every set in the product topology is in the topology generated by d.

Conversely, if W is in the topology generated by d, then for each $(x_0, y_0) \in W$ there is $\epsilon > 0$ such that

$$N = \{(x, y) \in A_1 \times A_2; d((x, y), (x_0, y_0)) < \epsilon\} \subset W$$

Let

$$N_1 = \{x \in A_1; d_1(x, x_0) < \frac{1}{2}\epsilon\} \subset U$$

and

$$N_2 = \{y \in A_2; d_2(y, y_0) < \frac{1}{2}\epsilon\} \subset V$$

Then $N_1 \times N_2$ is in the product topology, and

$$N_1 \times N_2 \subset N \subset W$$

Since

$$W = \bigcup_{(x_0, y_0) \in W} N_1 \times N_2$$

W is in the product topology. Therefore these two topologies are identical.

4. If S, T are topological spaces homeomorphic respectively to S', T', prove that $S \times T$ is homeomorphic to $S' \times T'$.

Ans: Since S is homeomorphic to S' there is a bi-continuous 1-1 map f from S to S'.

Similarly there is a bi-continuous 1-1 map g from T to T'.

Let F be the map from $S \times T$ to $S' \times T'$ defined by F(x,y) = (f(x), g(y)).

If $F(x_1, y_1) = F(x_2, y_2)$, then $f(x_1) = f(x_2)$ and $g(y_1) = g(y_2)$. Since f and g are 1 - 1, $(x_1, y_1) = (x_2, y_2)$ and F is also 1 - 1.

If W' is open in $S' \times T'$, then W' is the union of sets of the form $U' \times V'$, where U' is open in S' and V' is open in T'.

Let $U = f^{-1}(U')$ and $V = g^{-1}(V')$. These are open sets in S and T respectively. Then $F^{-1}(U' \times V') = U \times V$ is open in $S \times T$. Therefore

$$F^{-1}(W') = F^{-1} \left(\bigcup U' \times V' \right)$$
$$= \bigcup \left(F^{-1}(U' \times V') \right)$$
$$= \bigcup U \times V$$

is open in $S \times T$.

Therefore F is continuous from $S \times T$ to $S' \times T'$.

Similarly F^{-1} is continuous, so that F is a homeomorphism from $S \times T$ to $S' \times T'$.