1. If f is a many-one transformation of A into B, and A_{1} and A_{2} are subsets of A, prove that
(a)

$$
f\left(A_{1} \cup A_{2}\right)=f\left(A_{1}\right) \cup f\left(A_{2}\right) ;
$$

(b)

$$
f\left(A_{1} \cap A_{2}\right) \subset f\left(A_{1}\right) \cap f\left(A_{2}\right)
$$

In the second case, show that equality holds for all A_{1} and A_{2} if and only if f is a one-one transformation.

Ans: If $x \in A_{1} \cup A_{2}$, then $x \in A_{1}$ or $x \in A_{2}$.
Therefore, $f(x) \in f\left(A_{1}\right)$ or $f(x) \in f\left(A_{2}\right)$.
This means $f\left(A_{1} \cup A_{2}\right) \subset f\left(A_{1}\right) \cup f\left(A_{2}\right)$.
If $y \in f\left(A_{1}\right) \cup f\left(A_{2}\right)$, then $y \in f\left(A_{1}\right)$ or $y \in f\left(A_{2}\right)$.
Therefore $y=f(x)$ where $x \in A_{1}$ or $x \in A_{2}$; i.e. $x \in A_{1} \cup A_{2}$.
This means that $f\left(A_{1}\right) \cup f\left(A_{2}\right) \subset f\left(A_{1} \cup A_{2}\right)$.
Together these results mean $f\left(A_{1} \cup A_{2}\right)=f\left(A_{1}\right) \cup f\left(A_{2}\right)$.
If $x \in A_{1} \cap A_{2}$, then $x \in A_{1}$ and $x \in A_{2}$.
Therefore, $f(x) \in f\left(A_{1}\right)$ and $f(x) \in f\left(A_{2}\right)$.
This means that $f\left(A_{1} \cap A_{2}\right) \subset f\left(A_{1}\right) \cap f\left(A_{2}\right)$.
If f is many-one, then there are at least two distinct elements $x_{1} \neq x_{2}$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)(=y$ say $)$.

Setting $A_{1}=\left\{x_{1}\right\}$ and $A_{2}=\left\{x_{2}\right\}$, we see that

$$
A_{1} \cap A_{2}=\phi ; f\left(A_{1} \cap A_{2}\right)=\phi
$$

while

$$
f\left(A_{1}\right) \cap f\left(A_{2}\right)=\{y\} \neq \phi .
$$

However, if f is 1-1, then $f^{-1}(y)$ is uniqely defined, and if $y \in f\left(A_{1}\right) \cap f\left(A_{2}\right), y$ is in both $f\left(A_{1}\right)$ and $f\left(A_{2}\right)$.

Therefore $f^{-1}(y)$ is in both A_{1} and A_{2}, so that

$$
f\left(A_{1}\right) \cap f\left(A_{2}\right) \subset f\left(A_{1} \cap A_{2}\right) .
$$

Combined with the first result this gives equality.
2. Let A be the set of real numbers, and let a subset of A be called open if it is A or the null set or if it consists of points x such that $x>k$ for some k.

Prove that the open sets defined in this way form a topology for A.
Ans: Denote the interval (k, ∞) by S_{k}. In this notation, $A=S_{-\infty}$ and $\phi=S_{\infty}$. Denote by \mathcal{T} this collection of sets.

We need to show that \mathcal{T} satisfies the axioms of a topology.
By construction, $\phi \in \mathcal{T}$ and $A \in \mathcal{T}$.

Consider the intersection of a finite number of sets in \mathcal{T}.
If ϕ is one of these, then the intersection is also ϕ which is an element of \mathcal{T}.
Otherwise, let the sets be $\left\{S_{\alpha_{1}}, \ldots, S_{\alpha_{n}}\right\}$.
If α_{I} is the maximum of $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$, then

$$
I=\bigcap_{i=1}^{n} S_{\alpha_{i}}=S_{\alpha_{I}}
$$

since, if $x \in I, x \in S_{\alpha_{I}}$, while if $x \in S_{\alpha_{I}}$, then $x>\alpha_{I}$, so that $x>\alpha_{i}$ for $i=1 \ldots n$. Therefore $x \in S_{\alpha_{i}}$ for all i and hence $x \in I$.

Consider the union of an arbitrary number of sets in \mathcal{T}.
Let the sets be S_{α}.
If the set of values $\{\alpha\}$ is not bounded below, then for any $x \in A$, there is $\alpha^{*}<x$, and $x \in S_{\alpha^{*}}$. Therefore the union of the sets is A which is in \mathcal{T}.

Otherwise, let $a=\inf \{\alpha\}$. If $x>a$, then x is not a lower bound for $\{\alpha\}$, so that for some $\alpha^{*}, x>\alpha^{*} \geq a$.

Therefore

$$
S_{a} \subset \bigcup_{\alpha} S_{\alpha}
$$

On the other hand $\alpha \geq a$ for all α, so that

$$
S_{\alpha} \subset S_{a} ; \bigcup_{\alpha} S_{\alpha} \subset S_{a}
$$

Combining these results, we see that the union is $S_{a} \in \mathcal{T}$.
Since \mathcal{T} satisfies the axioms, it is a topology for A.
3. If $M_{1}=\left(A_{1}, d_{1}\right)$ and $M_{2}=\left(A_{2}, d_{2}\right)$ are two metric spaces, show that the function defined by

$$
d\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=d_{1}\left(x_{1}, y_{1}\right)+d_{2}\left(x_{2}, y_{2}\right)
$$

where $x_{1}, y_{1} \in A_{1}$ and $x_{2}, y_{2} \in A_{2}$ is a metric on $A_{1} \times A_{2}$.
Show that the topology generated by this metric is the product topology.
Ans: d satisfies the axioms fora metric;
(a)

$$
\begin{aligned}
d\left(\left(y_{1}, y_{2}\right),\left(x_{1}, x-2\right)\right) & =d_{1}\left(y_{1}, x_{1}\right)+d_{2}\left(y_{2}, x_{2}\right) \\
& =d_{1}\left(x_{1}, y_{1}\right)+d_{2}\left(x_{2}, y_{2}\right) \\
& =d\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \quad d_{1}\left(x_{1}, y_{1}\right) \geq 0, d_{2}\left(x_{2}, y_{2}\right) \geq 0, \\
& \text { therefore } d\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) \geq 0
\end{aligned}
$$

(c) $\quad d\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=0$ iff $d_{1}\left(x_{1}, y_{1}\right)=0$ and $d_{2}\left(x_{2}, y_{2}\right)=0$

$$
\text { i.e. iff } x_{1}=y_{1} \text { and } x_{2}=y_{2}
$$

(d) $\quad d\left(\left(x_{1}, x_{2}\right),\left(z_{1}, z_{2}\right)\right)=d_{1}\left(x_{1}, z_{1}\right)+d_{2}\left(x_{2}, z_{2}\right)$

$$
\begin{aligned}
& \leq d_{1}\left(x_{1}, y_{1}\right)+d_{1}\left(y_{1}, z_{1}\right)+d_{2}\left(x_{2}, y_{2}\right)+d_{2}\left(y_{2}, z_{2}\right) \\
& =d\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)+d\left(\left(y_{1}, y_{2}\right),\left(z_{1}, z_{2}\right)\right)
\end{aligned}
$$

Let U be open in $\left(A_{1}, d_{1}\right)$ and V be open in $\left(A_{2}, d_{2}\right)$. If $\left(x_{0}, y_{0}\right) \in U \times V$, then $x_{0} \in U$ and $y_{0} \in V$. Therefore there are positive constants ϵ_{1} and ϵ_{2} such that

$$
N_{1}=\left\{x \in A_{1} ; d_{1}\left(x, x_{0}\right)<\epsilon_{1}\right\} \subset U
$$

and

$$
N_{2}=\left\{y \in A_{2} ; d_{2}\left(y, y_{0}\right)<\epsilon_{2}\right\} \subset V
$$

Then if $\epsilon=\min \left(\epsilon_{1}, \epsilon_{2}\right)$,

$$
\left\{(x, y) \in A_{1} \times A_{2} ; d\left((x, y),\left(x_{0}, y_{0}\right)\right)<\epsilon\right\} \subset N_{1} \times N_{2} \subset U \times V
$$

Therefore $U \times V$ is open in $A_{1} \times A_{2}$.
Since the product topology consists of unions of sets of this form, every set in the product topology is in the topology generated by d.

Conversely, if W is in the topology generated by d, then for each $\left(x_{0}, y_{0}\right) \in W$ there is $\epsilon>0$ such that

$$
N=\left\{(x, y) \in A_{1} \times A_{2} ; d\left((x, y),\left(x_{0}, y_{0}\right)\right)<\epsilon\right\} \subset W
$$

Let

$$
N_{1}=\left\{x \in A_{1} ; d_{1}\left(x, x_{0}\right)<\frac{1}{2} \epsilon\right\} \subset U
$$

and

$$
N_{2}=\left\{y \in A_{2} ; d_{2}\left(y, y_{0}\right)<\frac{1}{2} \epsilon\right\} \subset V
$$

Then $N_{1} \times N_{2}$ is in the product topology, and

$$
N_{1} \times N_{2} \subset N \subset W
$$

Since

$$
W=\bigcup_{\left(x_{0}, y_{0}\right) \in W} N_{1} \times N_{2}
$$

W is in the product topology. Therefore these two topologies are identical.
4. If S, T are topological spaces homeomorphic respectively to S^{\prime}, T^{\prime}, prove that $S \times T$ is homeomorphic to $S^{\prime} \times T^{\prime}$.

Ans: Since S is homeomorphic to S^{\prime} there is a bi-continuous 1-1 map f from S to S^{\prime}.

Similarly there is a bi-continuous 1-1 map g from T to T^{\prime}.
Let F be the map from $S \times T$ to $S^{\prime} \times T^{\prime}$ defined by $F(x, y)=(f(x), g(y))$.
If $F\left(x_{1}, y_{1}\right)=F\left(x_{2}, y_{2}\right)$, then $f\left(x_{1}\right)=f\left(x_{2}\right)$ and $g\left(y_{1}\right)=g\left(y_{2}\right)$. Since f and g are $1-1,\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right)$ and F is also $1-1$.

If W^{\prime} is open in $S^{\prime} \times T^{\prime}$, then W^{\prime} is the union of sets of the form $U^{\prime} \times V^{\prime}$, where U^{\prime} is open in S^{\prime} and V^{\prime} is open in T^{\prime}.

Let $U=f^{-1}\left(U^{\prime}\right)$ and $V=g^{-1}\left(V^{\prime}\right)$. These are open sets in S and T respectively.
Then $F^{-1}\left(U^{\prime} \times V^{\prime}\right)=U \times V$ is open in $S \times T$.
Therefore

$$
\begin{aligned}
F^{-1}\left(W^{\prime}\right) & =F^{-1}\left(\bigcup U^{\prime} \times V^{\prime}\right) \\
& =\bigcup\left(F^{-1}\left(U^{\prime} \times V^{\prime}\right)\right) \\
& =\bigcup U \times V
\end{aligned}
$$

is open in $S \times T$.
Therefore F is continuous from $S \times T$ to $S^{\prime} \times T^{\prime}$.
Similarly F^{-1} is continuous, so that F is a homeomorphism from $S \times T$ to $S^{\prime} \times T^{\prime}$.

