1. Show that the union of two compact sets is compact, and that the intersection of any number of compact sets is compact.

Ans. Any open cover of $X_1 \cup X_2$ is an open cover for X_1 and for X_2. Therefore there is a finite subcover for X_1 and a finite subcover for X_2. The union of these subcovers, which is finite, is a subcover for $X_1 \cup X_2$.

The intersection of any number of compact sets is a closed subset of any of the sets, and therefore compact.

2. List all possible topologies on

(i) $\{a, b\}$

(ii) $\{a, b, c\}$

Ans. (i) $\{\emptyset, X\}; \{\emptyset, \{a\}, X\}; \{\emptyset, \{b\}, X\}; \{\emptyset, \{b\}, X\}; 2^X$

(ii) $\{\emptyset, X\}$

$\{\emptyset, \{a\}, X\}; \{\emptyset, \{b\}, X\}; \{\emptyset, \{c\}, X\}$

$\{\emptyset, \{a\}, \{b\}, X\}; \{\emptyset, \{a\}, \{c\}, X\}; \{\emptyset, \{a\}, \{b\}, X\}$

$\{\emptyset, \{a\}, \{b\}, \{c\}, X\}; \{\emptyset, \{a\}, \{b\}, \{c\}, X\}; \{\emptyset, \{a\}, \{b\}, \{c\}, X\}$

$\{\emptyset, \{a\}, \{b\}, \{a,b\}, X\}; \{\emptyset, \{b\}, \{a,b\}, X\}; \{\emptyset, \{a\}, \{b\}, \{a,b\}, X\}$

2^X

3. Prove that any map $f : (X, T_1) \rightarrow (Y, T_2)$ is continuous if either T_1 is the discrete topology or T_2 is the indiscrete topology.

Ans. If T_1 is the discrete topology, then every set in 2^X is in T_1. In particular $f^{-1}(U) \in T_1$ for every $U \in T_2$.

If T_2 is the indiscrete topology, then $T_2 = \{\emptyset, Y\}$.

$f^{-1}(Y) = X \in T_1$, $f^{-1}(\emptyset) = \emptyset \in T_1$.

4. Let (X, d) be \mathbb{Q} with the usual metric.

Show that the set $S = \{x \in \mathbb{Q} : x^2 < 2\}$ is both open and closed in (X, d).

Ans. For $x \in S$, let $\epsilon = \sqrt{2} - |x|$. Then $N(x, \epsilon) \subset S$ so that S is open.

For $x \in \mathbb{Q} \setminus S$, let $\epsilon = |x| - \sqrt{2}$. Then $N(x, \epsilon) \subset \mathbb{Q} \setminus S$ so that $\mathbb{Q} \setminus S$ is open and S is closed.
5. Prove that \(f : (X, \mathcal{T}) \rightarrow \mathbb{R} \) is continuous if and only if for every \(a \in \mathbb{R} \), \(f^{-1}((-\infty, a)) \) and \(f^{-1}((a, \infty)) \) are in \(\mathcal{T} \).

Ans. For any \(a < b \), \(f^{-1}((-\infty, b)) \in \mathcal{T} \) and \(f^{-1}((a, \infty)) \in \mathcal{T} \). Therefore

\[
\begin{align*}
f^{-1}((-\infty, b)) \cap f^{-1}((a, \infty)) & \in \mathcal{T} \\
f^{-1}((-\infty, b) \cap (a, \infty)) & = f^{-1}((a, b)) \in \mathcal{T}
\end{align*}
\]

Since every open set \(U \) in \(\mathbb{R} \) is the union of a countable collection of disjoint intervals,

\[
f^{-1}(U) = \bigcup f^{-1}((a_i, b_i)) = \bigcup f^{-1}((a_i, b_i)) \in \mathcal{T}
\]
and \(f \) is continuous.