MATH 3402

Tutorial Sheet 4

1. Show that the union of two compact sets is compact, and that the intersection of any number of compact sets is compact.

Ans. Any open cover of $X_{1} \cup X_{2}$ is an open cover for X_{1} and for X_{2}. Therefore there is a finite subcover for X_{1} and a finite subcover for X_{2}. The union of these subcovers, which is finite, is a subcover for $X_{1} \cup X_{2}$.

The intersection of any number of compact sets is a closed subset of any of the sets, and therefore compact.
2. List all possible topologies on
(i)

$$
\{a, b\}
$$

(ii)

$$
\{a, b, c\}
$$

Ans. (i)

$$
\{\phi, X\} ;\{\phi,\{a\}, X\} ;\{\phi,\{b\}, X\} ; 2^{X}
$$

(ii)

$$
\begin{gathered}
\{\phi, X\} \\
\{\phi,\{a\}, X\} ;\{\phi,\{b\}, X\} ;\{\phi,\{c\}, X\} \\
\{\phi,\{b, c\}, X\} ;\{\phi,\{a, c\}, X\} ;\{\phi,\{a, b\}, X\} \\
\{\phi,\{a\},\{b, c\}, X\} ;\{\phi,\{b\},\{a, c\}, X\} ;\{\phi,\{c\},\{a, b\}, X\} \\
\{\phi,\{a\},\{a, b\}, X\} ;\{\phi,\{b\},\{b, c\}, X\} ;\{\phi,\{c\},\{a, c\}, X\} \\
\{\phi,\{b\},\{a, b\}, X\} ;\{\phi,\{c\},\{b, c\}, X\} ;\{\phi,\{a\},\{a, c\}, X\} \\
\{\phi,\{a\},\{b\},\{a, b\}, X\} ;\{\phi,\{b\},\{c\},\{b, c\}, X\} ;\{\phi,\{a\},\{c\},\{a, c\}, X\} \\
\{\phi,\{a\},\{a, b\},\{a, c\} X\} ;\{\phi,\{b\},\{b, c\},\{a, b\} X\} ;\{\phi,\{c\},\{a, c\},\{b, c\} X\} \\
2^{X}
\end{gathered}
$$

3. Prove that any map $f:\left(X, \mathcal{T}_{1}\right) \rightarrow\left(Y, \mathcal{T}_{2}\right)$ is continuous if either \mathcal{T}_{1} is the discrete topology or \mathcal{T}_{2} is the indiscrete topology.

Ans. If \mathcal{T}_{1} is the discrete topology, then every set in 2^{X} is in \mathcal{T}_{1}. In particular $f^{-1}(U) \in \mathcal{T}_{1}$ for every $U \in \mathcal{T}_{2}$.

If \mathcal{T}_{2} is the indiscrete topology, then $\mathcal{T}_{2}=\{\phi, Y\}$.
$f^{-1}(Y)=X \in \mathcal{T}_{1}, f^{-1}(\phi)=\phi \in \mathcal{T}_{1}$.
4. Let (X, d) be \mathbb{Q} with the usual metric.

Show that the set $S=\left\{x \in \mathbb{Q} ; x^{2}<2\right\}$ is both open and closed in (X, d).
Ans. For $x \in S$, let $\epsilon=\sqrt{2}-|x|$. Then $\mathcal{N}(x, \epsilon) \subset S$ so that S is open.
For $x \in \backslash s$, let $\epsilon=|x|-\sqrt{2}$. Then $\mathcal{N}(x, \epsilon) \subset \backslash S$ so that $\backslash S$ is open ans S is closed.
5. Prove that $f:(X, \mathcal{T}) \rightarrow \mathbb{R}$ is continuous if and only if for every $a \in \mathbb{R}$, $f^{-1}((-\infty, a))$ and $f^{-1}((a, \infty))$ are in \mathcal{T}.

Ans. For any $a<b, f^{-1}((-\infty, b)) \in \mathcal{T}$ and $f^{-1}((a, \infty)) \in \mathcal{T}$. Therefore

$$
\begin{gathered}
f^{-1}((-\infty, b)) \cap f^{-1}((a, \infty)) \in \mathcal{T} \\
f^{-1}((-\infty, b) \cap(a, \infty))=f^{-1}((a, b)) \in \mathcal{T}
\end{gathered}
$$

Since every open set U in \mathbb{R} is the union of a countable collection of disjoint intervals,

$$
f^{-1}(U)=f^{-1}\left(\cup\left(a_{i}, b_{i}\right)\right)=\cup f^{-1}\left(\left(a_{i}, b_{i}\right)\right) \in \mathcal{T}
$$

and f is continuous.

