MATH 3402

TUTORIAL SHEET 4

1. Show that the union of two compact sets is compact, and that the intersection of any number of compact sets is compact.

Ans. Any open cover of $X_1 \cup X_2$ is an open cover for X_1 and for X_2 . Therefore there is a finite subcover for X_1 and a finite subcover for X_2 . The union of these subcovers, which is finite, is a subcover for $X_1 \cup X_2$.

The intersection of any number of compact sets is a closed subset of any of the sets, and therefore compact.

2. List all possible topologies on

(i)
$$\{a,b\}$$
(ii) $\{a,b,c\}$

Ans. (i)

$$\{\phi, X\}; \{\phi, \{a\}, X\}; \{\phi, \{b\}, X\}; 2^X$$

(ii)

$$\{\phi, X\} \\ \{\phi, \{a\}, X\}; \{\phi, \{b\}, X\}; \{\phi, \{c\}, X\} \\ \{\phi, \{b, c\}, X\}; \{\phi, \{a, c\}, X\}; \{\phi, \{a, b\}, X\} \\ \{\phi, \{a\}, \{b, c\}, X\}; \{\phi, \{b\}, \{a, c\}, X\}; \{\phi, \{c\}, \{a, b\}, X\} \\ \{\phi, \{a\}, \{a, b\}, X\}; \{\phi, \{b\}, \{b, c\}, X\}; \{\phi, \{c\}, \{a, c\}, X\} \\ \{\phi, \{b\}, \{a, b\}, X\}; \{\phi, \{c\}, \{b, c\}, X\}; \{\phi, \{a\}, \{a, c\}, X\} \\ \{\phi, \{a\}, \{b\}, \{a, b\}, X\}; \{\phi, \{b\}, \{c\}, \{b, c\}, X\}; \{\phi, \{a\}, \{c\}, \{a, c\}, X\} \\ \{\phi, \{a\}, \{a, b\}, \{a, c\}X\}; \{\phi, \{b\}, \{b, c\}, \{a, b\}X\}; \{\phi, \{c\}, \{a, c\}, \{b, c\}X\} \\ 2^X$$

3. Prove that any map $f : (X, \mathcal{T}_1) \to (Y, \mathcal{T}_2)$ is continuous if either \mathcal{T}_1 is the discrete topology or \mathcal{T}_2 is the indiscrete topology.

Ans. If \mathcal{T}_1 is the discrete topology, then every set in 2^X is in \mathcal{T}_1 . In particular $f^{-1}(U) \in \mathcal{T}_1$ for every $U \in \mathcal{T}_2$.

If \mathcal{T}_2 is the indiscrete topology, then $\mathcal{T}_2 = \{\phi, Y\}$. $f^{-1}(Y) = X \in \mathcal{T}_1, f^{-1}(\phi) = \phi \in \mathcal{T}_1.$

4. Let (X, d) be \mathbb{Q} with the usual metric. Show that the set $S = \{x \in \mathbb{Q}; x^2 < 2\}$ is both open and closed in (X, d).

Ans. For $x \in S$, let $\epsilon = \sqrt{2} - |x|$. Then $\mathcal{N}(x, \epsilon) \subset S$ so that S is open. For $x \in \langle s, \text{ let } \epsilon = |x| - \sqrt{2}$. Then $\mathcal{N}(x, \epsilon) \subset \langle S \text{ so that } \langle S \text{ is open ans } S \text{ is closed.}$ 5. Prove that $f: (X, \mathcal{T}) \to \mathbb{R}$ is continuous if and only if for every $a \in \mathbb{R}$, $f^{-1}((-\infty, a))$ and $f^{-1}((a, \infty))$ are in \mathcal{T} .

Ans. For any a < b, $f^{-1}((-\infty, b)) \in \mathcal{T}$ and $f^{-1}((a, \infty)) \in \mathcal{T}$. Therefore

$$f^{-1}((-\infty, b)) \cap f^{-1}((a, \infty)) \in \mathcal{T}$$

 $f^{-1}((-\infty, b) \cap (a, \infty)) = f^{-1}((a, b)) \in \mathcal{T}$

Since every open set U in $\mathbb R$ is the union of a countable collection of disjoint intervals,

$$f^{-1}(U) = f^{-1}(\cup(a_i, b_i)) = \cup f^{-1}((a_i, b_i)) \in \mathcal{T}$$

and f is continuous.

 $\mathbf{2}$