MATH 3402

Tutorial Sheet 3
Solutions

1. Show that a finite union of bounded sets is bounded.

Ans. Consider

$$
\bigcup_{i=1}^{n} S_{i}
$$

where each S_{i} is bounded in (X, d).
Therefore, for some fixed $a \in X$ and for each i there is a constant k_{i} such that $d(x, a) \leq k_{i}$ for each $x \in S_{i}$.

Let $k=\max _{i} k_{i}$.
If $x \in \cup S_{i}, x \in S_{i}$ for some i. Then, $d(x, a) \leq k_{i} \leq k$, and $\cup S_{i}$ is bounded.
Show that the intersection of an arbitrary number of bounded sets is either bounded or empty.

Ans. Let S_{α} be a collection of bounded sets in (X, d).
For some fixed $a \in X$ and for each α there is a constant $k_{\alpha} \geq 0$ such that $d(x, a) \leq k_{\alpha}$ for all $x \in S_{\alpha}$.

Let $k=\inf \left\{k_{\alpha}\right\}$. If $x \in S_{\alpha}$ for every α, then $d(x, a) \leq k_{\alpha}$ for every α, so that $d(x, a) \leq k$ and $\cap S_{\alpha}$ is bounded if it is not empty.
2. Show that if a metric space (X, d) has the property that every bounded sequence converges, then X consists of only one point.

Ans. Since the sequences converge, they have a limit in X, so that X is not empty.

If x_{1} and x_{2} are distinct points of X, then the sequence

$$
a_{n}=\left\{\begin{array}{l}
x_{1} \text { if } n=2 m \\
x_{2} \text { if } n=2 m+1
\end{array}\right.
$$

is a bounded sequence in (X, d) which does not converge.
3. Say whether the following sequences converge, and find their limit if they do:
a) $a_{n}=x^{-n}$ in $C\left(\frac{1}{3}, \frac{2}{3}\right)$ (the continuous functions on the open interval $\left(\frac{1}{3}, \frac{2}{3}\right)$) with the uniform - sup - metric;

Ans. Since $\left\|a_{n}\right\|=3^{n}$, the sequence is not bounded and therefore does not converge.
b) $a_{n}=e^{-n x}$ in $C[0,1]$ with the uniform metric.

Ans. The limit function is discontinuous, therefore this sequence does not converge.
c) $a_{n}=\left(\alpha_{n}, f\left(\alpha_{n}\right)\right)$ in \mathbb{R} with the Euclidean metric, where α_{n} is a convergent sequence in \mathbb{R} with limit α, and $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous.

Given any $\epsilon>0$, there is $\delta>0$ such that $|x-\alpha|<\delta$ implies $|f(x)-f(\alpha)|$.
Let $\delta^{*}=\min (\epsilon, \delta)$.
Since $\left\{\alpha_{n}\right\}$ converges to α, there is N such that $\left|\alpha_{n}-\alpha\right|<\delta^{*}$ for all $n>N$.
Therfore $\left|f\left(\alpha_{n}\right)-f(\alpha)\right|<\epsilon$ for all $n>N$, and

$$
\left(\left(\alpha_{n}-\alpha\right)^{2}+\left(f\left(\alpha_{n}\right)-f(\alpha)\right)^{2}\right)^{1 / 2}<\epsilon \sqrt{2}
$$

for all $n>N$.
4. Determine the diameter of the set $\{|z|<r\}$ in (\mathbb{C}, d) where

$$
d\left(z_{1}, z_{2}\right)=\frac{2\left|z_{1}-z_{2}\right|}{\sqrt{1+\left|z_{1}\right|^{2}} \sqrt{1+\left|z_{2}\right|^{2}}}
$$

Ans. The circle $|z|=r$ in the complex plane maps onto a circle of latitude on the Riemann Sphere under the stereographic projection

The point $z=r$ maps onto the point $\left(2 r /\left(1+r^{2}\right), 0,\left(r^{2}-1\right) /\left(r^{2}+1\right)\right)$, so that the diameter of this circle is $4 r /\left(1+r^{2}\right)$.

If $r \leq 1$, this is the diameter of the set $\{|z|<r\}$.
If $r>1$, the set includes the whole of the southern hemisphere, and the diameter of the set is 2 .

Repeat the exercise for the set $\{|z-1|<r\}$.
Ans. When the circle $|z-1|=r$ is mapped onto the Riemann sphere, the most widely separated points are the images of $1+r$ and $1-r$ which map onto

$$
\left(\frac{2 r+2}{r^{2}+2 r^{2}+2}, 0, \frac{r^{2}+2 r}{r^{2}+2 r+2}\right) \text { and }\left(\frac{2-2 r}{r^{2}-2 r+2}, 0, \frac{r^{2}-2 r}{r^{2}-2 r+2}\right)
$$

The distance between these points is $4 r / \sqrt{r^{4}+4}$, which is the diameter of the set for $r \leq \sqrt{2}$.

For $r>\sqrt{2}$, the diameter of the set is 2 .
5. Let $\left\{f_{n}(x)\right\}$ be a sequence of functions, continuous on the closed interval $[a, b] \in \mathbb{R}$, which is a Cauchy sequence with respect to the uniform metric on $C[a, b]$.
a) Prove that the sequence converges pointwise on $[a, b]$.

Ans. Since $\left\{f_{n}\right\}$ is a Cauchy sequence with respect to the sup metric on $[a, b]$, given any $\epsilon>0$ there is N such that

$$
\sup _{a \leq x \leq b}\left|f_{n}(x)-f_{m}(x)\right|<\epsilon \forall m, n>N .
$$

Therefore for each $x_{0} \in[a, b]$,

$$
\left|f_{n}\left(x_{0}\right)-f_{m}\left(x_{0}\right)\right|<\epsilon \forall m, n>N
$$

and $\left\{f_{n}\left(x_{0}\right)\right\}$ is a Cauchy sequence in \mathbb{R}, which converges in \mathbb{R}.
b) Prove that the function defined by these pointwise limits is continuous on $[a, b]$.

Ans. Let $f(x)$ denote the pointwise limit of the sequence.
Given any $\epsilon>0$, there is N such that

$$
\sup _{a \leq x \leq b}\left|f_{n}(x)-f(x)\right|<\frac{1}{3} \epsilon \forall n>N .
$$

Choose $n_{1}>N$. Since $f_{n_{1}}$ is continuous on $[a, b]$, for every x_{0} in $[a, b]$ there exists $\delta>0$ such that

$$
\left|f_{n_{1}}(x)-f_{n_{1}}\left(x_{0}\right)\right|<\frac{1}{3} \epsilon \forall x \in[a, b] ;\left|x-x_{0}\right|<\delta .
$$

Therefore

$$
\left|f(x)-f\left(x_{0}\right)\right| \leq\left|f(x)-f_{n_{1}}(x)\right|+\left|f_{n_{1}}(x)-f_{n_{1}}\left(x_{0}\right)\right|+\left|f_{n_{1}}\left(x_{0}\right)-f\left(x_{0}\right)\right|<\epsilon
$$

for all $x \in[a, b] ;\left|x-x_{0}\right|<\delta$.
6. Show that the taxicab and Euclidean metrics are topologically equivalent on \mathbb{R}^{2}.

Ans.

$$
\begin{gathered}
\left(\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|\right)^{2}=\left(x_{1}-x_{2}\right)^{2}+2\left|x_{1}-x_{2}\right|\left|y_{1}-y_{2}\right|+\left(y_{1}-y_{2}\right)^{2} \\
2\left|x_{1}-x_{2}\right|\left|y_{1}-y_{2}\right| \leq\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2} \\
d_{2}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)^{2} \leq d_{1}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)^{2} \leq 2 d_{2}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)^{2} \\
d_{2} \leq d_{1} \leq \sqrt{2} d_{2}
\end{gathered}
$$

7. Show that the metrics

$$
d_{1}\left(z_{1}, z_{2}\right)=\left|z_{1}-z_{2}\right|
$$

and

$$
d_{2}=\frac{2\left|z_{1}-z_{2}\right|}{\sqrt{1+\left|z_{1}\right|^{2}} \sqrt{1+\left|z_{2}\right|^{2}}}
$$

are topologically equivalent on \mathbb{C}.
Ans. $d_{2}\left(z_{1}, z_{2}\right) \leq 2 d_{1}\left(z_{1}, z_{2}\right)$ for all $z_{1}, z_{2} \in \mathbb{C}$, therefore

$$
\left\{d_{1}(z, a)<\frac{1}{2} \epsilon\right\} \subset\left\{d_{2}(z, a)<\epsilon\right\}
$$

and any set open in $\left(\mathbb{C}, d_{2}\right)$ is open in $\left(\mathbb{C}, d_{1}\right)$.

$$
\text { If }|z-a|<\epsilon
$$

$$
\begin{aligned}
d_{1}(z, a) & =\frac{1}{2} \sqrt{1+|a|^{2}} \sqrt{1+|z|^{2}} d_{2}(z, a) \\
& \leq \frac{1}{2} \sqrt{1+|a|^{2}} \sqrt{1+(|a|+\epsilon)^{2}} d_{2}(z, a)
\end{aligned}
$$

Let

$$
\epsilon_{1}=\frac{2 \epsilon}{\sqrt{1+|a|^{2}} \sqrt{1+(|a|+\epsilon)^{2}}}
$$

then

$$
\left\{d_{2}(z, a)<\epsilon_{1}\right\} \subset\left\{d_{1}(z, a)<\epsilon\right\}
$$

and any set open in $\left(\mathbb{C}, d_{1}\right)$ is open in $\left(\mathbb{C}, d_{2}\right)$.

