MATH 3402

Tutorial Sheet 2
Solutions

1. In each of the following cases, say whether (X, d) is a metric space or not. If it is not, say which of the axioms fails.
(a)
$X=\mathbb{R}^{2} ; d\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=\left|y-y^{\prime}\right|$.
Ans. $d\left((x, 0),\left(x^{\prime}, 0\right)\right)=0$ therefore axiom 2 fails
(b)
$X=\mathbb{C} ; d\left(z_{1}, z_{2}\right)=\left|z_{1}-z_{2}\right|$.
Ans. This is the standard metric on \mathbb{C}.
(c)

$$
X=\mathbb{Q} ; d(x, y)=(x-y)^{3} .
$$

Ans. $d(y, x)=-d(x, y)$. Axioms 2 and 3 fail.
(d)

$$
X=\mathbb{C} ; d\left(z_{1}, z_{2}\right)=\min \left\{\left|z_{1}\right|+\left|z_{2}\right|,\left|z_{1}-1\right|+\left|z_{2}-1\right|\right\} \text { if } z_{1} \neq z_{2}, d(z, z)=0 .
$$

Ans. The first three axioms are obviously satisfied.
If either $z_{1}=z_{2}$ or $z_{2}=z_{3}$ or $z_{1}=z_{3}$, the fourth axiom is trivially satisfied. Therefore assume that all the points are distinct.

The metric is invariant under the mapping $z: \rightarrow 1-z$, therefore, wlog we can take $d\left(z_{1}, z_{3}\right)=\left|z_{1}\right|+\left|z_{3}\right|$, and consider the possible values of $d\left(z_{1}, z_{2}\right)$ and $d\left(z_{2}, z_{3}\right)$.

If $d\left(z_{1}, z_{2}\right)=\left|z_{1}\right|+\left|z_{2}\right|$ and $d\left(z_{2}, z_{3}\right)=\left|z_{2}\right|+\left|z_{3}\right|$, then

$$
d\left(z_{1}, z_{2}\right)+d\left(z_{2}, z_{3}\right)=\left|z_{1}\right|+\left|z_{3}\right|+2\left|z_{2}\right| \geq d\left(z_{1}, z_{3}\right) .
$$

If $d\left(z_{1}, z_{2}\right)=\left|z_{1}\right|+\left|z_{2}\right|$ and $d\left(z_{2}, z_{3}\right)=\left|z_{2}-1\right|+\left|z_{3}-1\right|$, then

$$
\begin{gathered}
d\left(z_{1}, z_{3}\right)=\left|z_{1}\right|+\left|z_{3}\right| \\
=\left|z_{1}\right|+\left|\left(z_{3}-1\right)-\left(z_{2}-1\right)+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{3}-1\right|+\left|z_{2}-1\right|+\left|z_{2}\right| \\
\leq d\left(z_{1}, z_{2}\right)+d\left(z_{2}, z_{3}\right)
\end{gathered}
$$

If $d\left(z_{1}, z_{2}\right)=\left|z_{1}-1\right|+\left|z_{2}-1\right|$ and $d\left(z_{2}, z_{3}\right)=\left|z_{2}-1\right|+\left|z_{3}-1\right|$, then

$$
\begin{aligned}
d\left(z_{1}, z_{2}\right) & +d\left(z_{2}, z_{3}\right)=\left|z_{1}-1\right|+\left|z_{3}-1\right|+2\left|z_{2}-1\right| \\
& \geq\left|z_{1}-1\right|+\left|z_{3}-1\right| \geq d\left(z_{1}, z_{3}\right) .
\end{aligned}
$$

Therefore (\mathbb{C}, d) is a metric space.
(e)

$$
X=\mathbb{R} ; d(x, y)=\left|\int_{x}^{y} f(t) d t\right|
$$

where $f: \mathbb{R} \rightarrow \mathbb{R}$ is a given positive integrable function.

Ans. Again the first three axioms are obviously satisfied.
To show that the fourth axiom is satisfied, assume wlog that $x<z$ so that

$$
d(x, z)=\int_{x}^{z} f(t) d t
$$

If $x<y<z$,

$$
d(x, z)=\int_{x}^{z} f(t) d t=\int_{x}^{y} f(t) d t+\int_{y}^{z} f(t) d t=d(x, y)+d(y, z)
$$

If $x<z<y$,

$$
d(x, y)=d(x, z)+d(z, y) ; d(x, z) \leq d(x, y) \leq d(x, y)+d(y, z)
$$

If $y<x<z$,

$$
d(y, z)=d(y, x)+d(x, z) ; d(x, z) \leq d(y, z) \leq d(x, y)+d(y, z)
$$

Therefore (\mathbb{R}, d) is a metric space.
2. Sketch the sets $\left\{\underline{x} \in \mathbb{R}^{2}, d(\underline{x}, \underline{0})<1\right\}$ when $d(\underline{x}, \underline{y})$ is
(a) The Euclidean metric;

Ans. The interior of the unit circle.
(b) The taxicab metric;

Ans. The interior of the square with vertices $(\pm 1,0),(0, \pm 1)$.
(c) The sup metric;

Ans. The interior of the square with vertices $(\pm 1, \pm 1)$.
(d) The discrete metric.

Ans. The point $\underline{x}=\underline{0}$.
3. For $z_{j}=x_{j}+i y_{j} \in \mathbb{C}$, let

$$
\xi_{j}=\frac{2 x_{j}}{1+\left|z_{j}\right|^{2}} ; \eta_{j}=\frac{2 y_{j}}{1+\left|z_{j}\right|^{2}} ; \zeta_{j}=\frac{1-\left|z_{j}\right|^{2}}{1+\left|z_{j}\right|^{2}}
$$

Show that

$$
\begin{equation*}
\xi_{j}^{2}+\eta_{j}^{2}+\zeta_{j}^{2}=1 \tag{i}
\end{equation*}
$$

Ans.

$$
\begin{gathered}
\xi_{j}^{2}+\eta_{j}^{2}+\zeta_{j}^{2} \\
=\frac{4 x_{j}^{2}+4 y_{j}^{2}+1-2\left|z_{j}\right|^{2}+\left|z_{j}\right|^{4}}{1+2\left|z_{j}\right|^{2}+\left|z_{j}\right|^{4}}=1
\end{gathered}
$$

(ii) $\quad\left(\left(\xi_{1}-\xi_{2}\right)^{2}+\left(\eta_{1}-\eta_{2}\right)^{2}+\left(\zeta_{1}-\zeta_{2}\right)^{2}\right)^{1 / 2}=\frac{2\left|z_{1}-z_{2}\right|}{\sqrt{\left(1+\left|z_{1}\right|^{2}\right.} \sqrt{\left(1+\left|z_{2}\right|^{2}\right)}}$

Ans.

$$
\begin{gathered}
\left(\xi_{1}-\xi_{2}\right)^{2}+\left(\eta_{1}-\eta_{2}\right)^{2}+\left(\zeta_{1}-\zeta_{2}\right)^{2} \\
=\xi_{1}^{2}-2 \xi_{1} \xi_{2}+\xi_{2}^{2}+\eta_{1}^{2}-2 \eta_{1} \eta_{2}+\eta_{2}^{2}+\zeta_{1}^{2}-2 \zeta_{1} \zeta_{2}+\zeta_{2}^{2} \\
=2-2\left(\xi_{1} \xi_{2}+\eta_{1} \eta_{2}+\zeta_{1} \zeta_{2}\right) \\
=2-\frac{8 x_{1} x_{2}+8 y_{1} y_{2}+2-2\left|z_{1}\right|^{2}-2\left|z_{2}\right|^{2}+2\left|z_{1}\right|^{2}\left|z_{2}\right|^{2}}{1+\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{1}\right|^{2}\left|z_{2}\right|^{2}} \\
=4 \frac{\left|z_{1}\right|^{2}-2 x_{1} x_{2}-2 y_{1} y_{2}+\left|z_{2}\right|^{2}}{\left(1+\left|z_{1}\right|^{2}\right)\left(1+\left|z_{2}\right|^{2}\right)} \\
=4 \frac{x_{1}^{2}+y_{1}^{2}-2 x_{1} x_{2}-2 y_{1} y_{2}+x_{2}^{2}+y_{2}^{2}}{\left(1+\left|z_{1}\right|^{2}\right)\left(1+\left|z_{2}\right|^{2}\right)} \\
=4 \frac{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}{\left(1+\left|z_{1}\right|^{2}\right)\left(1+\left|z_{2}\right|^{2}\right)} \\
=4 \frac{\left|z_{1}-z_{2}\right|^{2}}{\left(1+\left|z_{1}\right|^{2}\right)\left(1+\left|z_{2}\right|^{2}\right)}
\end{gathered}
$$

Hence deduce that

$$
d\left(z_{1}, z_{2}\right)=\frac{2\left|z_{1}-z_{2}\right|}{\sqrt{\left(1+\left|z_{1}\right|^{2}\right.} \sqrt{\left(1+\left|z_{2}\right|^{2}\right)}}
$$

is a metric on \mathbb{C}.
Ans. This function is derived from the Euclidean metric in \mathbb{R}^{3} (restricted to the unit sphere), therefore the axioms for a metric satisfied by d.

Show that the sequence $\left\{z_{n}=n\right\}$ is a Cauchy sequence with respect to this metric.

Ans. Suppose wlog that $m>n$.

$$
\begin{aligned}
d(m, n) & =\frac{2(m-n)}{\sqrt{1+m^{2}} \sqrt{1+n^{2}}} \\
& <\frac{2(1-(n / m)}{\sqrt{1+n^{2}}} \\
& <\frac{2}{n}
\end{aligned}
$$

Given any $\epsilon>0$, choose $N=[2 / \epsilon]$.
For $m>n>N, d(m, n)<\frac{2}{n}<\epsilon$ as required.
4. Show that if for some $x_{0} \in S, d\left(x, x_{0}\right)<k$ for all $x \in Q$, then for any $a \in S$ there is a constant k_{a} such that $d(x, a)<k_{a}$ for all $x \in Q$.
(That is, a set Q is bounded in S if it is bounded with respect to some member of S.)

Ans. For any $a \in S$ and any $x \in Q \subset S$,

$$
d(x, a) \leq d\left(x, x_{0}\right)+d\left(x_{0}, a\right)<k+d\left(x_{0}, a\right)=k_{a}
$$

