MATH 3402 TUTORIAL SHEET 1 Solutions

1.Describe each of the following sets as the empty set, as \mathbb{R} , or in interval notation as appropriate:

(a)
$$\bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n} \right)$$

(b)
$$\bigcup_{n=1}^{\infty} (-n, n)$$

(c)
$$\bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, 1 + \frac{1}{n} \right)$$

(d)
$$\bigcup_{n=1}^{\infty} \left(-\frac{1}{n}, 2 + \frac{1}{n} \right)$$

(e)
$$\bigcup_{n=1}^{\infty} \left(\mathbb{R} \setminus \left(-\frac{1}{n}, \frac{1}{n} \right) \right)$$

(f)
$$\bigcap_{n=1}^{\infty} \left(\mathbb{R} \setminus \left[\frac{1}{n}, 2 + \frac{1}{n} \right] \right)$$

Ans.

$$\begin{array}{ll} (\mathrm{a}) & -\frac{1}{n} < 0 < \frac{1}{n} \ \forall \ n, \ \mathrm{therefore} \ 0 \in \cap (-\frac{1}{n}, \frac{1}{n}); \\ \mathrm{If} \ x > 0, \exists N; x > \frac{1}{N}, \ \mathrm{therefore} \ x \not\in (-\frac{1}{N}, \frac{1}{N}), \ \mathrm{therefore} \ x \not\in \cap (-\frac{1}{n}, \frac{1}{n}). \\ \mathrm{Similarly,} \ \mathrm{if} \ x < 0, x \not\in \cup (-\frac{1}{n}, \frac{1}{n}), \ \mathrm{therefore} \ \cap (-\frac{1}{n}, \frac{1}{n}) = \{0\} = [0, 0]. \\ (\mathrm{b}) & \forall \ x \in \mathbb{R}, \exists N; N \leq x < N+1, \ \mathrm{therefore} \ \mathrm{if} \ x \geq 0, x \in (-N-1, N+1) \\ \mathrm{and} \ \mathrm{if} \ x < 0, x \in (N-1, 1-N), \ \mathrm{therefore}, \ \cup (-n, n) = \mathbb{R}. \\ (\mathrm{c}) \ \mathrm{Similar} \ \mathrm{to} \ (\mathrm{a}). \ \cap (-\frac{1}{n}, 1+\frac{1}{n}) = \{0 \leq x \leq 1\} = [0, 1]. \end{array}$$

(d) Since $(-\frac{1}{n}, 2 + \frac{1}{n}) \subset (-1, 3) \ \forall \ n, \cup (-\frac{1}{n}, 2 + \frac{1}{n}) = (-1, 3).$

 $\cup (\mathbb{R} \setminus (-\frac{1}{n}, \frac{1}{n}) = \mathbb{R} \setminus (\cap (-\frac{1}{n}, \frac{1}{n})) = \mathbb{R} \setminus \{0\} = (-\infty, 0) \cup (0, \infty).$ (e)

(f)
$$\cup \left(\mathbb{R} \setminus \left[\frac{1}{n}, 2 + \frac{1}{n}\right]\right) = \mathbb{R} \setminus \left(\cup \left[\frac{1}{n}, 2 + \frac{1}{n}\right]\right) = \mathbb{R} \setminus (0, 3] = (-\infty, 0] \cup (3, \infty).$$

2. Show that if $A \subset B \subset \mathbb{R}$, and if B is bounded above, then A is bounded above, and $\sup A \leq \sup B$.

Ans.

$$\exists b \; ; \; x \in B \Rightarrow \; x \leq b \; .$$

But, if $x \in A$, $x \in B$, so that $x \leq b$ and A is bounded above.

Since any upper bound for B is an upper bound for A, in particular sup B is an upper bound for A.

Hence $\sup A \leq \sup B$.

3. Let a_0 and a_1 be distinct real numbers. Define $a_n = \frac{1}{2}(a_{n-1} + a_{n-2})$ for each positive integer $n \ge 2$. Show that $\{a_n\}$ is a Cauchy sequence.

Ans.

$$a_n - a_{n-1} = \frac{1}{2}(a_{n-1} + a_{n-2}) - a_{n-1}$$
$$= -\frac{1}{2}(a_{n-1} - a_{n-2})$$
$$= \left(-\frac{1}{2}\right)^{n-1}(a_1 - a_0)$$

Therefore, for n > m,

$$a_n - a_m = \sum_{r=m+1}^n (a_r - a_{r-1})$$

= $\sum_{r=m+1}^n \left(-\frac{1}{2}\right)^{r-1} (a_1 - a_0)$
= $\frac{\left(-\frac{1}{2}\right)^{m-1} - \left(-\frac{1}{2}\right)^n}{1 - \left(-\frac{1}{2}\right)} (a_1 - a_0)$
 $|a_n - a_m| \le \frac{2}{3} 2\left(\frac{1}{2}\right)^{m-1} |a_1 - a_0|$
= $\frac{8}{3} |a_1 - a_0| 2^{-m}$

Given $\epsilon > 0$, determine N such that

$$\frac{8}{3}|a_1 - a_0| \, 2^{-N} < \epsilon$$

and then

$$|a_n - a_m| < \epsilon \ \forall \ n > m > N$$

4. Suppose x is an accumulation point of $\{a_n : n \in \mathbb{N}\}$.

Show that there is a subsequence of $\{a_n\}$ that converges to x.

Ans.

Since x is an accumulation point, given any $\epsilon > 0$ there are infinitely many elements of $a_i \in \{a_n\}$ such that $|a_i - x| < \epsilon$.

In particular, for $\epsilon=1$ we can find a_{i_1} such that $|a_{i_1}-x|<1$.

Now for $\epsilon < \frac{1}{2}$ there are infinitely many a_i such that $|a_i - x| < \frac{1}{2}$. In particular, we can find an a_{i_2} in this collection for which $i_2 > i_1$.

Similarly, with $\epsilon = \frac{1}{4}$ we can find a_{i_3} with $i_3 > i_2 > i_1$ and $|a_{i_3} - x| < \frac{1}{4}$.

Proceeding in this fashion we construct the required subsequence.

5. Given the non-negative real numbers a_1, a_2, \ldots, a_r , let $a = \sup\{a_i\}$. Prove that for any integer n,

$$a^n \le a^n_i + a^n_2 + \dots + a^n_r \le ra^n ,$$

and determine

$$\lim n \to \infty \left(a_1^n + a_2^n + \dots + a_r^n\right)^{1/n}$$

Ans.

Since the set $\{a_i\}$ is finite, $a = a_i$ for some *i*.

Therefore
$$a^n \leq a_1^n + a_2^n + \dots + a_r^n$$
.

Since $a = \sup\{a_i\}, a \ge a_i$ for each *i*.

Therefore
$$a_1^n + a_2^n + \dots + a_r^n \le ra^n$$
.

Taking the n^{th} root, we obtain

$$a \leq (a_1^n + a_2^n + \dots + a_r^n)^{1/n} \leq r^{1/n}a$$
.

As $n \to \infty$, $r^{1/n} \to 1$, so that

$$\lim n \to \infty \left(a_1^n + a_2^n + \dots + a_r^n \right)^{1/n} = a \; .$$

6. Consider the sequence

$$0, 1, -1, 2, -2, \frac{1}{2}, -\frac{1}{2}, \ldots$$

used to demonstrate the countability of the rationals.

a) What is the fiftieth term in this sequence?

b) Which term in the sequence is $-\frac{4}{5}$?

Ans.

The fiftieth term in this sequence will be the twentyfifth term in the corresponding sequence of positive rationals:

1	2	$\frac{1}{2}$	$\frac{1}{3}$	3 3	4	$\frac{3}{2}$	$\frac{2}{3}$	$\frac{1}{4}$	$\frac{1}{5}$
5	6	$\frac{\overline{5}}{2}$	$\frac{4}{3}$	$\frac{3}{4}$	$\frac{2}{5}$	$\frac{3}{2}$ $\frac{1}{6}$	$\frac{1}{7}$	143 <u>53</u> 7	$\frac{5}{3}$
7	8	$\frac{1}{25}$	$\frac{5}{4}$	$\frac{5}{4}$	$\frac{2}{7}$	$\frac{1}{8}$	$\frac{1}{9}$	$\frac{3}{7}$	$\frac{1}{55}$

namely $\frac{4}{5}$. $-\frac{4}{5}$ is the fifty first term in the sequence.