Tutorial Sheet 1
Solutions
1.Describe each of the following sets as the empty set, as \mathbb{R}, or in interval notation as appropriate:
(a)

$$
\bigcap_{n=1}^{\infty}\left(-\frac{1}{n}, \frac{1}{n}\right)
$$

(b)

$$
\bigcup_{n=1}^{\infty}(-n, n)
$$

(c)

$$
\bigcap_{n=1}^{\infty}\left(-\frac{1}{n}, 1+\frac{1}{n}\right)
$$

(d)

$$
\bigcup_{n=1}^{\infty}\left(-\frac{1}{n}, 2+\frac{1}{n}\right)
$$

(e)

$$
\bigcup_{n=1}^{\infty}\left(\mathbb{R} \backslash\left(-\frac{1}{n}, \frac{1}{n}\right)\right)
$$

$$
\begin{equation*}
\bigcap_{n=1}^{\infty}\left(\mathbb{R} \backslash\left[\frac{1}{n}, 2+\frac{1}{n}\right]\right) \tag{f}
\end{equation*}
$$

Ans.

(a) $-\frac{1}{n}<0<\frac{1}{n} \forall n$, therefore $0 \in \cap\left(-\frac{1}{n}, \frac{1}{n}\right)$;

If $x>0, \exists N ; x>\frac{1}{N}$, therefore $x \notin\left(-\frac{1}{N}, \frac{1}{N}\right)$, therefore $x \notin \cap\left(-\frac{1}{n}, \frac{1}{n}\right)$.
Similarly, if $x<0, x \notin \cup\left(-\frac{1}{n}, \frac{1}{n}\right)$, therefore $\cap\left(-\frac{1}{n}, \frac{1}{n}\right)=\{0\}=[0,0]$.
(b) $\quad \forall x \in \mathbb{R}, \exists N ; N \leq x<N+1$, therefore if $x \geq 0, x \in(-N-1, N+1)$ and if $x<0, x \in(N-1,1-N)$, therefore, $\cup(-n, n)=\mathbb{R}$.
(c) Similar to (a). $\cap\left(-\frac{1}{n}, 1+\frac{1}{n}\right)=\{0 \leq x \leq 1\}=[0,1]$.
(d) Since $\left(-\frac{1}{n}, 2+\frac{1}{n}\right) \subset(-1,3) \forall n, \cup\left(-\frac{1}{n}, 2+\frac{1}{n}\right)=(-1,3)$.
(e) $\quad \cup\left(\mathbb{R} \backslash\left(-\frac{1}{n}, \frac{1}{n}\right)=\mathbb{R} \backslash\left(\cap\left(-\frac{1}{n}, \frac{1}{n}\right)\right)=\mathbb{R} \backslash\{0\}=(-\infty, 0) \cup(0, \infty)\right.$.
(f) $\quad \cup\left(\mathbb{R} \backslash\left[\frac{1}{n}, 2+\frac{1}{n}\right]\right)=\mathbb{R} \backslash\left(\cup\left[\frac{1}{n}, 2+\frac{1}{n}\right]\right)=\mathbb{R} \backslash(0,3]=(-\infty, 0] \cup(3, \infty)$.
2. Show that if $A \subset B \subset \mathbb{R}$, and if B is bounded above, then A is bounded above, and $\sup A \leq \sup B$.

Ans.

$$
\exists b ; x \in B \Rightarrow x \leq b
$$

But, if $x \in A, x \in B$, so that $x \leq b$ and A is bounded above.
Since any upper bound for B is an upper bound for A, in particular $\sup B$ is an upper bound for A.

Hence $\sup A \leq \sup B$.
3. Let a_{0} and a_{1} be distinct real numbers.

Define $a_{n}=\frac{1}{2}\left(a_{n-1}+a_{n-2}\right)$ for each positive integer $n \geq 2$.
Show that $\left\{a_{n}\right\}$ is a Cauchy sequence.

Ans.

$$
\begin{aligned}
a_{n}-a_{n-1} & =\frac{1}{2}\left(a_{n-1}+a_{n-2}\right)-a_{n-1} \\
& =-\frac{1}{2}\left(a_{n-1}-a_{n-2}\right) \\
& =\left(-\frac{1}{2}\right)^{n-1}\left(a_{1}-a_{0}\right)
\end{aligned}
$$

Therefore, for $n>m$,

$$
\begin{aligned}
a_{n}-a_{m} & =\sum_{r=m+1}^{n}\left(a_{r}-a_{r-1}\right) \\
& =\sum_{r=m+1}^{n}\left(-\frac{1}{2}\right)^{r-1}\left(a_{1}-a_{0}\right) \\
& =\frac{\left(-\frac{1}{2}\right)^{m-1}-\left(-\frac{1}{2}\right)^{n}}{1-\left(-\frac{1}{2}\right)}\left(a_{1}-a_{0}\right) \\
\left|a_{n}-a_{m}\right| & \leq \frac{2}{3} 2\left(\frac{1}{2}\right)^{m-1}\left|a_{1}-a_{0}\right| \\
& =\frac{8}{3}\left|a_{1}-a_{0}\right| 2^{-m}
\end{aligned}
$$

Given $\epsilon>0$, determine N such that

$$
\frac{8}{3}\left|a_{1}-a_{0}\right| 2^{-N}<\epsilon
$$

and then

$$
\left|a_{n}-a_{m}\right|<\epsilon \forall n>m>N .
$$

4. Suppose x is an accumulation point of $\left\{a_{n}: n \in \mathbb{N}\right\}$.

Show that there is a subsequence of $\left\{a_{n}\right\}$ that converges to x.
Ans.
Since x is an accumulation point, given any $\epsilon>0$ there are infinitely many elements of $a_{i} \in\left\{a_{n}\right\}$ such that $\left|a_{i}-x\right|<\epsilon$.

In particular, for $\epsilon=1$ we can find $a_{i_{1}}$ such that $\left|a_{i_{1}}-x\right|<1$.
Now for $\epsilon<\frac{1}{2}$ there are infinitely many a_{i} such that $\left|a_{i}-x\right|<\frac{1}{2}$. In particular, we can find an $a_{i_{2}}$ in this collection for which $i_{2}>i_{1}$.

Similarly, with $\epsilon=\frac{1}{4}$ we can find $a_{i_{3}}$ with $i_{3}>i_{2}>i_{1}$ and $\left|a_{i_{3}}-x\right|<\frac{1}{4}$.
Proceeding in this fashion we construct the required subsequence.
5. Given the non-negative real numbers $a_{1}, a_{2}, \ldots, a_{r}$, let $a=\sup \left\{a_{i}\right\}$. Prove that for any integer n,

$$
a^{n} \leq a_{i}^{n}+a_{2}^{n}+\cdots+a_{r}^{n} \leq r a^{n}
$$

and determine

$$
\lim n \rightarrow \infty\left(a_{1}^{n}+a_{2}^{n}+\cdots+a_{r}^{n}\right)^{1 / n}
$$

Ans.
Since the set $\left\{a_{i}\right\}$ is finite, $a=a_{i}$ for some i.

$$
\text { Therefore } \quad a^{n} \leq a_{1}^{n}+a_{2}^{n}+\cdots+a_{r}^{n} .
$$

Since $a=\sup \left\{a_{i}\right\}, a \geq a_{i}$ for each i.

$$
\text { Therefore } \quad a_{1}^{n}+a_{2}^{n}+\cdots+a_{r}^{n} \leq r a^{n} .
$$

Taking the $n^{t h}$ root, we obtain

$$
a \leq\left(a_{1}^{n}+a_{2}^{n}+\cdots+a_{r}^{n}\right)^{1 / n} \leq r^{1 / n} a
$$

As $n \rightarrow \infty, r^{1 / n} \rightarrow 1$, so that

$$
\lim n \rightarrow \infty\left(a_{1}^{n}+a_{2}^{n}+\cdots+a_{r}^{n}\right)^{1 / n}=a
$$

6. Consider the sequence

$$
0,1,-1,2,-2, \frac{1}{2},-\frac{1}{2} \ldots
$$

used to demonstrate the countability of the rationals.
a) What is the fiftieth term in this sequence?
b) Which term in the sequence is $-\frac{4}{5}$?

Ans.

The fiftieth term in this sequence will be the twentyfifth term in the corresponding sequence of positive rationals:

$$
\begin{array}{cccccccccc}
1 & 2 & \frac{1}{2} & \frac{1}{3} & 3 & 4 & \frac{3}{2} & \frac{2}{3} & \frac{1}{4} & \frac{1}{5} \\
5 & 6 & \frac{5}{2} & \frac{4}{3} & \frac{3}{4} & \frac{2}{5} & \frac{1}{6} & \frac{1}{7} & \frac{3}{5} & \frac{5}{3} \\
7 & 8 & \frac{7}{2} & \frac{5}{4} & \frac{4}{5} & \frac{2}{7} & \frac{1}{8} & \frac{1}{9} & \frac{3}{7} & \frac{7}{3}
\end{array}
$$

namely $\frac{4}{5}$.
$-\frac{4}{5}$ is the fiftyfirst term in the sequence.

