NEW TUTORIAL 3.1 FOR MATH3402

Question 1. Let $\{a_n\}_{n=1}^{\infty}$ be a Cauchy sequence in a metric space in (X, d)and let $\{a_{i_k}\}_{n=1}^{\infty}$ be a subsequence of $\{a_n\}_{n=1}^{\infty}$. Show that

$$\lim_{n \to \infty} d(a_n, a_{i_n}) = 0.$$

Question 2. Let $\{a_n\}_{n=1}^{\infty}$ be a Cauchy sequence in a metric space in (X, d)and let $\{a_{i_n}\}_{n=1}^{\infty}$ be a subsequence of $\{a_n\}_{n=1}^{\infty}$ converging to $p \in X$. Show that $\{a_n\}_{n=1}^{\infty}$ also converges to p.

Question 3. Let $\{b_n\}_{n=1}^{\infty}$ be a Cauchy sequence in a metric space X, and let $\{a_n\}_{n=1}^{\infty}$ be a sequence in X such that $d(a_n, b_n) < \frac{1}{n}$ for every $n \in \mathbb{N}$.

(i) Show that $\{a_n\}_{n=1}^{\infty}$ is also a Cauchy sequence in X.

(ii)Show that $\{a_n\}_{n=1}^{\infty}$ converges to $p \in X$ if and only if $\{b_n\}_{n=1}^{\infty}$ converges to $p \in X$.

Question 4. Let A be a subset of a metric space (X,d). Then $x \in X$ is a point of accumulation (limit point) of A if and only if there is an infinite sequence $\{a_n\}_{n=1}^{\infty}$ with $a_n \in A$ which converges to x.

Typeset by $\mathcal{A}_{\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$