ASSIGNMENT 4 FOR MATH3402 IN 2013

Due date: 31 May 2013.

PLEASE SUBMIT IT TO THE ASSIGNMENT BOX, level four, Priestley Building \#67

Question 1. (3 marks)
Let (X, \mathcal{T}) be a topological space and consider the product space

$$
X \times X:=\{(x, y) \in X \times X: x \in X \text { and } y \in X\}
$$

Show that the topological space (X, \mathcal{T}) is Hausdorff if and only if the the diagonal set D of $X \times X$ is closed in the product topological space $X \times X$, where the diagonal set is

$$
D:=\{(x, y) \in X \times X: x=y \in X\}
$$

Question 2. (2 marks)
Let A be a closed and bounded set in \mathbb{R} such that $A \subset[a, b]$. Assume that $[a, b]$ is compact. Then you show that A is compact in \mathbb{R}.

Question 3. (2 marks)
Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a function given by

$$
f(x)=\left(\begin{array}{ccc}
\frac{1}{2} & 0 & \frac{1}{3} \\
0 & \frac{1}{5} & 0 \\
-\frac{1}{3} & 0 & \frac{1}{2}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right), \quad \forall x=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \in \mathbb{R}^{3}
$$

Prove that f is a contraction on \mathbb{R}^{3} with the standard Euclidean metric.

Question 4. (3 marks)
Let $C^{1}([0,1])$ be the space of all functions having continuous derivatives. For each $f \in C^{1}([0,1])$, set

$$
\|f\|=\left(\int_{0}^{1}\left(|f|^{2}+\left|f^{\prime}\right|^{2}\right) d x\right)^{1 / 2}
$$

Show that $\|\cdot\|$ is a norm of the space of $C^{1}([0,1])$.

