ASSIGNMENT 3 FOR MATH3402 DUE DATE: 6 MAY 2013

PLEASE SUBMIT IT TO THE ASSIGNMENT BOX, LEVEL FOUR, PRIESTLEY BUILDING #67

Question 1. (3 marks)

(a) Show that the collection of all open intervals $\{(a,b)\}$ is a basis of \mathbb{R} with the standard Euclidean topology.

(b) Using all basic open sets of \mathbb{R} , prove that $f(x, y) = x^2 + y^2$ is continuous function from \mathbb{R}^2 to \mathbb{R} . (i.e. Show that $f^{-1}((a, b))$ is open in \mathbb{R}^2 .)

Question 2. (3 marks)

Show that the collection of the sets of the form

$$\mathcal{B} = \{ (x, y) \in \mathbb{R}^2 : a \le x < b, c \le y < d, \text{ with } a, b, c, d \in \mathbb{R}, a < b, c < d \}$$

is a basis for a topology on \mathbb{R}^2 .

(A basis for a topology on X is a collection \mathcal{B} of subsets of X satisfying: (i) for each $x \in X$, there is at least a basic open set B containing x and (ii) if $x \in B_1 \cap B_2$ for two basic open sets $B_1, B_2 \in \mathcal{B}$, then there is a basic open set $B_3 \in \mathcal{B}$ such that $x \in B_3 \subset B_1 \cap B_2$.)

Question 3. (4 marks)

(a) By the Heine-Borel Theorem, show that \mathbb{R}^2 is not compact and the sphere

$$S^{2} = \{(x, y, z) \in \mathbb{R}^{3} : x^{2} + y^{2} + z^{2} = 1\}$$

is compact in \mathbb{R}^3 .

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$

(b) Show that \mathbb{R}^2 and S^2 is not homeomorphic. (i.e. no continuous bijective function f between \mathbb{R}^2 and S^2 such that the inverse function f^{-1} is continuous).