ASSIGNMENT 2 FOR MATH3402 IN 2013

Due date: 12 April 2013.

please submit it to the assignment box, level four, Priestley Building \#67

Question 1. (3 marks)
Let $S=C^{0}([0,1] ; \mathbb{R})$ denote the set of all continuous functions $f:[0,1] \rightarrow \mathbb{R}$. For two continuous functions $f \in S, g \in S$, set

$$
d(f, g)=\max _{0 \leq x \leq 1}|f(x)-g(x)| .
$$

Prove (S, d) is a metric space.
Question 2. (3 marks)
(i) Let (S, d) be a metric space (i.e. d is a metric on S). Show that for any x, $y, z \in S$

$$
|d(x, z)-d(y, z)| \leq d(x, y)
$$

(ii) Let (S, d) be a metric space. Take $a \in S$ and let $f: S \rightarrow \mathbb{R}$ be a function defined by

$$
f(x)=d(x, a), \quad \forall x \in S
$$

Then show that f is continuous at each $x_{0} \in S$.

Question 3. (4 marks)
Let $p>1, q>1$ be the dual indices, i.e. $\frac{1}{p}+\frac{1}{q}=1$ and let $X=C^{0}([a, b] ; \mathbb{R})$ be the space of all continuous functions on $[a, b]$ with two real numbers $a<b$. Assume $f(x)$ and $g(x)$ be continuous functions on $[a, b]$ i.e. $f, g \in C^{0}([a, b] ; \mathbb{R})$. Then
(i) Use Young's inequality to prove

$$
\begin{equation*}
\int_{a}^{b}|f(x)||g(x)| d x \leq\left(\int_{a}^{b}|f(x)|^{p} d x\right)^{1 / p}\left(\int_{a}^{b}|g(x)|^{q} d x\right)^{1 / q} \tag{3.1}
\end{equation*}
$$

where (3.1) is called "Hölder's inequality".
(ii) Use the inequality (3.1) to prove
(2.2) $\left(\int_{a}^{b}|f(x)+g(x)|^{p} d x\right)^{1 / p} \leq\left(\int_{a}^{b}|f(x)|^{p} d x\right)^{1 / p}+\left(\int_{a}^{b}|g(x)|^{p} d x\right)^{1 / p}$
(iii) Use the inequality (3.2) to prove that

$$
d(f, g)=\|f-g\|_{p}=\left(\int_{a}^{b}|f(x)-g(x)|^{p} d x\right)^{1 / p}
$$

is a metric on the space $C^{0}([a, b] ; \mathbb{R})$ of all continuous functions on $[a, b]$.

