ASSIGNMENT 1 FOR MATH3402 IN 2013

Due date: 23 March 2013.

Please submit it to the assignment box, level four, Priestley Building #67

Question 1. (3 marks)

Let X be a universe. Let $\{A_i\}_{i\in\Lambda}$ be a family of sets in X, where Λ is a set of index. Prove

$$X \setminus \cap_{i \in \Lambda} A_i = \bigcup_{i \in \Lambda} (X \setminus A_i),$$

where $X \setminus A_i$ denotes the complement set of A_i .

Question 2. (3 marks) Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. Let $\{a_n\}_{n=1}^{\infty}$ be a convergent sequence in \mathbb{R} with $\lim_{n\to\infty} a_n = a$ and f(a) > 0. Prove that: (i) There is a positive integer N such that for all n > N, $f(a_n) \ge \frac{f(a)}{2}$.

(ii) The sequence $\left\{\frac{1}{f(a_n)}\right\}$ converges to $\frac{1}{f(a)}$; i.e. $\lim_{n\to\infty} \frac{1}{f(a_n)} = \frac{1}{f(a)}$.

Question 3. (4 marks)

Let $f : \mathbb{R} \to \mathbb{R}$ be a function given by

 $f(x) = \begin{cases} x, & \text{if } x \text{ is a rational number} \\ -x, & \text{if } x \text{ is an irrational number.} \end{cases}$

Show that f(x) is not continuous at every point $x_0 \neq 0$.