MATH 3402

First Semester Examination, June 2001 Assorted Solutions

1. Let (X, d) is a metric space. Define a new function $d': X \times X \to \mathbb{R}$ by

$$d'(x,y) = \frac{d(x,y)}{1+d(x,y)}$$
.

Show that d' is a metric on X, and that (X, d') is bounded. For r > 0, define

$$B_r(c) = \{ x \in X; \ d(x,c) < r \}$$
$$B'_r(c) = \{ x \in X; \ d'(x,c) < r \}$$

Show that for any R > 0 there is an S > 0 such that

$$B_S'(c) \subset B_R(c)$$

and conversely, for any s > 0 there is an r > 0 such that

$$B_r(c) \subset B'_s(c)$$
.

Ans.

If d(x, c) < r, then

$$d'(x,c) = \frac{d(x,c)}{1 + d(x,c)} \le d(x,c) < r$$

also. Therefore $B_r(c) \subset B'_r(c)$. Given R > 0, let S = R/(1+R). Then, if d'(x,c) < S,

$$\begin{aligned} \frac{d(x,c)}{1+d(x,c)} &< \frac{R}{1+R} \\ (1+R)d(x,c) &< R(1+d(x,c)) \\ d(x,c) &< R \end{aligned}$$

and $B'_S(c) \subset B_R(c)$.

2. Let $Y_i, i \in \mathbb{N}$, be subsets of a topological space (X, \mathcal{T}) . Show that

$$Z = \bigcap_{n=1}^{\infty} Cl\left(\bigcup_{i=n}^{\infty} Y_i\right)$$

is a closed subset of X.

Ans.

Since the closure of a set is closed, the sets

$$Cl\left(\bigcup_{i=n}^{\infty}Y_{i}\right)$$

are closed subsets of X.

Since the intersection of any number of closed sets is closed, Z is also closed.

If $\{x_n\}$ is a convergent sequence in X, converging to ζ , such that $x_n \in Y_n$ for all $n \in \mathbb{N}$, show that $\zeta \in Z$.

Ans.

Let $U_n = \bigcup_{i=n}^{\infty} Y_i$. Since $x_n \in Y_n$ for all n, U_n contains the subsequence

$$\{x_n, x_{n+1}, x_{n+2}, \dots\}$$

and hence $Cl(U_n)$ contains the limit ζ for each n. Therefore $\zeta \in Z$.

3.(a) Let (X, \mathcal{T}) be a topological space, and $A \subset X$.

What is meant by the statements:

(i) ' \mathcal{C} is an open cover for A';

(ii) 'A is compact' .

(b) Let C be the topological space consisting of the rational numbers together with the discrete topology.

Which subsets of C (if any) are compact?

Ans.

In any topological space, a finite set $A = \{x_i\}_{i=1}^n$ is compact, since given any open cover $\{U_\alpha\}$, we can choose n sets U_i such that $x_i \in U_i$ which cover A.

In any set with the discrete topology, singleton sets are open.

Therefore for any infinite set $A = \{x_{\alpha}\}$, the collection

$$\mathcal{C} = \{\{x_\alpha\}\}$$

is an open cover for A such that no proper subset of \mathcal{C} covers A. Hence no infinite set is compact.

Therefore the compact subsets of C are those containing a finite number of elements.

Let C^* be the one point compactification of C. Describe the topology of C^* , and verify that C^* is compact.

Ans. Let $C^* = \{y\} \cup C$. The topology of C^* consists of

(a) The topology of C – all subsets of C; and

(b) all sets of the form $\{y\} \cup M, M \subset C$, where $C \setminus M$ is compact in C; that is finite.

If $\mathcal{C} = \{U_{\alpha}\}$ covers C, then at least one set contains y.

That is, there is a set $U_0 = \{y\} \cup M_0$ such that $C \setminus M_0$ is finite; $C \setminus M_0 = \{x_1, x_2, \dots, x_n\}$.

For each x_i choose $U_i \in \mathcal{C}$ such that $x_i \in U_i$.

Then $\{U_0, U_1, \ldots, U_n\}$ covers C^* , and C^* is compact.