
MATH 3402
Continuity and Uniform Continuity

Cover.
A collection G = {Gα ⊂ X} covers a set S in X if S ⊂ ∪αGα.
If each of the sets Gα is open in X, we say that this is an open cover for S.

Compact Set.
A set S ⊂ X is compact if and only if for every collection {Gα} of open sets in

X which cover S, there is a finite subcollection {Gαi}, i = 1 . . . n, such that

S ⊂ ∪ni=1Gαi .

(Every open cover has a finite subcover.)

A compact set is bounded.
Let S be a compact set in (X, d).
Choose some a ∈ X.
The sets Gn = {x ∈ X : d(x, a) < n;n ∈ N} are open in (X, d), and cover X.

Therefore they cover S.
Therefore there is a finite set {Gn1 , Gn2 , . . . , Gnk} which covers S.
Therefore d(x, a) < max(ni) for every x ∈ S, and S is bounded.

A compact set is closed.
Let S be a compact set in (X, d), and let a ∈ \S.
The sets Gn = {x ∈ X : d(x, a) > 1

n ;n ∈ N} are open in (X, d) and cover X\{a}.
Therefore they cover S.

Therefore there is a finite set {Gn1 , Gn2 , . . . , Gnk} which covers S.
If N = maxni, d(x, a) > 1

N for all x ∈ S, and a is not an accumulation point of
S.

Therefore S contains all its accumulation points, and is closed.

The converse of these results does not hold in general.
If d is the discrete metric and X is an infinite set, then any infinite subset S ⊂ X

is closed and bounded, but is not compact.
The collection {Gα = {α} : α ∈ S} is an open cover for S but no finite subcol-

lection covers S.

However, the converse does hold in (R, |.|).

The Heine-Borel Theorem. A closed and bounded set in R is compact.

Theorem. An infinite subset of a compact set has an accumulation point in the
set.

Proof.
Suppose that S is a compact set in (X, d), the set T ⊂ S has no accumulation

point in S.
Then for every x ∈ S, there is a neighbourhood N (x, εx) for some εx > 0 which

contains at most one point of T (when x ∈ T .)
The collection {N (x, εx)} is an open cover for S, therefore there is a finite sub-

cover for S.
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Since this sub-cover also covers T , and each set in the subcover contains at most
one point of T , the set T is finite.

It follows that a Cauchy sequence in a compact set converges in the set.

Theorem. If S is a compact set, and f : (X, dX) → (Y, dY ) is continuous on S,
then f is uniformly continuous on S.

Proof.
Given any ε > 0, for every x in S there is a δx > 0 such that

dX(y, x) < δx =⇒ dY (f(y), f(x)) < ε/2.

For each x ∈ S, define the set Gx by

Gx = {y ∈ S; dX(y, x) < δx/2}.

The collection {Gx} is an open cover for S.
Therefore, there is a finite set {x1, . . . , xn} such that {Gxi} is an open cover for

S.
Let δ =min(δxi/2).
Any x ∈ S is in one of the Gxi ; ie dX(x, xi) < δxi/2(< δxi).

dX(y, xi) ≤ dX(y, x) + dX(x, xi) < δ + δxi/2 ≤ δxi .

Therefore

dY (f(x), f(xi)) < ε/2 and dY (f(y), f(xi)) < ε/2

so that dY (f(y), f(x)) < ε.
i.e. y, x ∈ S and dX(y, x) < δ =⇒ dY (f(y), f(x)) < ε.

Consequently, if {xn} is a Cauchy sequence in a compact set S, and f is contin-
uous on S then {f(xn)} is a Cauchy sequence in f(S).

Proof.
Since f is uniformly continuous from S to f(S), given any ε > 0, there is a δ > 0

such that
dY (f(y), f(x)) < ε ∀ x, y ∈ S ; dX(y, x) < δ .

Given this δ, we can find N ∈ N such that

dX(xn, xm) < δ ∀ n,m > N .

But then
dY (f(xn), f(xm)) < ε ∀ n,m > N .
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Theorem. If S ⊂ X is compact, and f : X → Y is continuous on S then f(S) is
compact.

Proof. Let {Gα} be any open cover for f(S). Then {f−1(Gα)} is an open cover for
S.

But S is compact, therefore there is a finite subcover {f−1(Gαi)} for S, and
{Gαi} is now a finite subcover for f(S).

Combining these results, we see that if {xn} is Cauchy in S, and f is continuous
on S, {f(xn)} converges in f(S).

Since a compact set is closed and bounded, we also have as a consequence the
following.

Corollary ; The extreme value theorem. If S is compact, and f ;S → R is
continuous on S, then there are x1, x2 ∈ S such that

f(x1) ≤ f(x) ≤ f(x2) for all x ∈ S.


