MATH 3402
CONTINUITY AND UNIFORM CONTINUITY

Cover.
A collection G = {G, C X} covers a set S in X if S C U,G,,.
If each of the sets G, is open in X, we say that this is an open cover for S.

Compact Set.
A set S C X is compact if and only if for every collection {G,} of open sets in
X which cover S, there is a finite subcollection {G,,}, i = 1...n, such that

S C UL, G,,.

(Every open cover has a finite subcover.)

A compact set is bounded.

Let S be a compact set in (X, d).

Choose some a € X.

The sets G,, = {z € X : d(z,a) < n;n € N} are open in (X,d), and cover X.
Therefore they cover S.

Therefore there is a finite set {G,,, Gn,, .., Gn, } which covers S.

Therefore d(x,a) < max(n;) for every x € S, and S is bounded.

A compact set is closed.

Let S be a compact set in (X, d), and let a € \S.

The sets G, = {z € X : d(z,a) > L;n € N} are open in (X, d) and cover X \{a}.
Therefore they cover S.

Therefore there is a finite set {G,,,,Gn,, ..., Gy, } which covers S.

If N =maxn;, d(z,a) > % for all x € S, and a is not an accumulation point of
S

Therefore S contains all its accumulation points, and is closed.

The converse of these results does not hold in general.

If d is the discrete metric and X is an infinite set, then any infinite subset S C X
is closed and bounded, but is not compact.

The collection {G,, = {a} : @ € S} is an open cover for S but no finite subcol-
lection covers S.

However, the converse does hold in (R, |.|).

The Heine-Borel Theorem. A closed and bounded set in R is compact.

Theorem. An infinite subset of a compact set has an accumulation point in the
set.

Proof.

Suppose that S is a compact set in (X, d), the set 7' C S has no accumulation
point in S.

Then for every z € S, there is a neighbourhood N (z,¢,) for some €, > 0 which
contains at most one point of T (when z € T.)

The collection {N(x,€,)} is an open cover for S, therefore there is a finite sub-
cover for S.
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Since this sub-cover also covers T, and each set in the subcover contains at most
one point of T, the set T is finite.

It follows that a Cauchy sequence in a compact set converges in the set.
Theorem. If S is a compact set, and [ : (X,dx) — (Y,dy) is continuous on S,
then f is uniformly continuous on S.

Proof.

Given any € > 0, for every x in S there is a §, > 0 such that

dx (y,z) < 8y = dy (f(y), f(z)) < €/2.

For each = € S, define the set G, by
Gy ={y € S;dx(y,x) < d,/2}.

The collection {G,} is an open cover for S.

Therefore, there is a finite set {z1,...,x,} such that {G,} is an open cover for
S.

Let 6 =min(d,,/2).

Any x € S is in one of the G,,; ie dx (z,x;) < 04, /2(< 6y,)-

Therefore

dy (f(z), f(x:)) <€/2 and dy(f(y), f(z:)) <e€/2

so that dy (f(y), f(z)) < e.
ie. y,x € Sand dx(y,x) <6 = dy (f(y), f(x)) < e.

Consequently, if {x, } is a Cauchy sequence in a compact set S, and f is contin-
uous on S then {f(z,)} is a Cauchy sequence in f(S5).

Proof.
Since f is uniformly continuous from S to f(5), given any € > 0, thereisa § > 0
such that

dY(f(?J)?f(x)) <€Vx,y€5; dx(y7$) <90.

Given this §, we can find N € N such that
dx(Tp, Tm) <V n,m>N .

But then
dy (f(za), f(@m)) < €V nym > N .
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Theorem. If S C X is compact, and f: X — Y is continuous on S then f(S) is
compact.

Proof. Let {G,} be any open cover for f(S). Then {f~!(G,)} is an open cover for
S.

But S is compact, therefore there is a finite subcover {f~1(G,,)} for S, and
{G4,} is now a finite subcover for f(S).

Combining these results, we see that if {x,} is Cauchy in S, and f is continuous

on S, {f(x,)} converges in f(.5).

Since a compact set is closed and bounded, we also have as a consequence the
following.

Corollary ; The extreme value theorem. If S is compact, and f;S — R is
continuous on S, then there are x1,xo € S such that

f(x1) < f(z) < f(z2) for allz € S.



