
Topologocal Spaces

We start with some set X (the space) and consider the set 2X of all subsets of
X.

From 2X we select a collection T if subsets of X with the following properties:

φ ∈ T
X ∈ T
If T1&T2 ∈ T , T1 ∩ T2 ∈ T

For any collection Tα ∈ T ,
⋃
α

Tα ∈ T

These rules obviously mimic the properties of open sets in a metric space. The
set T is now taken to be the complete set of ”open sets” in X. We call T a topology
on X, and the joint structure (X, T ) is called a topological space.

If we have a metric on X, then the collection of open sets generated by that
metric is a topology on X. However, we do not need to have a metric to generate
a topology.

Consider for example the set X consisting of all students in MATH 3402.
If we select A1 as the set of all students whose surnames begin with the letters

A to M, and A2 as the set of allstudents whose surnames begin with the letters N
to Z, then

T1 = {φ,A1, A2, X}

is a topology on X.
Similarly, if we select G1 as the set of all boys in the class, and G2 as the set of

all girls,
T2 = {φ,G1, G2, X}

is another topology on X.

We can combine these two topologies by considering

S11 = A1 ∩G1

S12 = A1 ∩G2

S21 = A2 ∩G1

S22 = A2 ∩G2

and forming the collection of all possible unions of these sets:

T3 = {φ, S11, S12, S21, S22,

A1, A2, G1, G2, S11 ∪ S22, S12 ∪ S21

\S11, \S12, \S21, \S22, X}

which is another topology on X.
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The topology T3 contains every set that is in T1.
We say that T3 is finer that T1, and that T1 is coarser than T3.
Similarly, T3 is finer that T2, and T2 is coarser than T3.
However, T1 and T2 are not comparable in this way.

The topology T = 2X , which is generated by the discrete metric, is the finest of
all. This topology is called the discrete topology.

At the other extreme, the topology consisting of φ and X, which is called the
indiscrete topology is the coarsest of all.

Between these extremes, the various topologies on X generate a lattice.

Continuity.
Let f be a function from the topological space (X, TX) into the topological space

(Y, TY ).
We say that f is continuous if for every T ∈ TY , f−1(T ) ∈ Tx.

This definition mimics the result for metric spaces.

For example consider the function which assigns a mark to each student in this
class.

The set Y of possible marks is traditionally classified into

C1 : [0..19]

C2 : [20..44]

C3 : [45..49]

C4 : [50..64]

C5 : [65..74]

C6 : [75..84]

C7 : [85..100]

and we obtain a topology for Y by collecting all possible unions of these sets.

TY = {φ,Ci, Ci ∪ Cj , Ci ∪ Cj ∪ Ck, . . . , Y }

The mapping f : (X, T3)→ (Y, TY ) will be continuous in the unlikely event that
the inverse image of each element of TY is in T3.

Since
f−1(Ci ∪ Cj) = f−1(Ci) ∪ f−1(Cj)

the function will be continuous if f−1(Ci) ∈ T3 for i = 1, .., 7.

Bases.
The set {C1, C2, C3, C4, C5, C6, C7} is a very simple example of a basis for a

topological space.

A basis for a topological space (X, T ) is a subset {Bα} of T with the property
that every element of T can be expressed as the union of elements of the basis.

In this definition we admit the possibility of a null union.
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We also speak of a basis for X.
A collection B of subsets of X is a basis for X if
1) X is a union of sets from B.
2) For B1, B2 ∈ B, B1 ∩B2 is a union of sets from B.

Given a basis B for X, the set

T = {U ∈ 2X : U is a union of sets from B}

is a topology for X, and B is a basis for T .

As we have seen in the particular case studied above,to prove that a function f
from (X, T1) to (Y, T2) is continuous, it is sufficient to show that f−1(Bi) is open
in (X, T1) for every Bi in some basis for T2.

In general bases contain enormous numbers of sets. However, this number is
”less” than the number of sets in the topolgy.

For example, we can form a basis for the topology on a metric space (X, d) by
considering the set B of all ε neighbourhoods N (a, ε) where εleK for some positive
K.

When d is the discrete metric and K < 1, this generates the basis of singletons.
For R this generates a basis containing c2 = c(< 2c) elements.
We can economise by using the density of Q in R, and restrict the basis to

{N (r1, r2)} where r1 and r2 are rational (0 < r2 < K), which is a countable basis.

Sub-bases.
A sub-basis for a topology T is a subcollection S ⊂ T such that any set in T is

a union of finite intersections of sets from S.
In particular a basis can be represented as the intersection of sets from the

sub-basis.
For example, {A1, A2, G1, G2} are a sub-basis for T3, although in this case there

is no advantage in considering the sub-basis instead of the basis.
We can also define a sub-basis for the set X as any collection S of subsets of

X. The collection of all finite intersections of sets from S together with X (which
could be considered as a ”null intersection”) forms a basis for X.

The topology generated by this basis is called the topology generated by S, and
is the weakest topology containing S.

Consider the function f from X to (Y, TY ).
The topology generated by {f−1(S) ; S ∈ TY } is the weakest topology on X

relative to which f is continuous.


