TOPOLOGICAL SPACES

Subspaces.

If we have a topological space (X, \mathcal{T}) , then for any non-empty subset $A \subset X$ we obtain a topology for A by taking

$$\mathcal{T}_A = \{ U \cap A \, ; \, U \in \mathcal{T} \} \; .$$

Unless otherwise specified, we assume that a subset of a topological space inherits this topology.

This induced topology preserves continuity.

Denote by i the inclusion map from A to X; that is i(x) = x for $x \in A$. This map is continuous.

If $U \in \mathcal{T}$, then $i^{-1}(U) = U \cap A \in \mathcal{T}_A$.

If f is a continuous function from (X, \mathcal{T}) to (Y, \mathcal{T}_Y) , then $f \circ i$ is continuous from (A, \mathcal{T}_A) to (Y, \mathcal{T}_Y) .

If $U \in \mathcal{T}_Y$, then $f^{-1}(U) \in \mathcal{T}$. Therefore $f^{-1}(U) \cap A \in \mathcal{T}_A$. But $(f \circ i)^{-1}(U) = f^{-1}(U) \cap A$, so that $f \circ i$ is continuous as required.

The function g from (Y, \mathcal{T}_Y) to (A, \mathcal{T}_A) is continuous if and only if $i \circ g$ is continuous from (Y, \mathcal{T}_Y) to (X, \mathcal{T}) .

Suppose that g is continuous from Y to A. Then $i \circ g$ is a continuous function of a continuous function and therefore continuous.

Suppose that $i \circ g$ is continuous from Y to X. Consider $V \in \mathcal{T}_A$. $V = U \cap A$ for some $U \in \mathcal{T}$. Therefore $V = i^{-1}(U)$, and

$$g^{-1}(V) = g^{-1}(i^{-1}(U)) = (i \circ g)^{-1}(U) \in \mathcal{T}_Y$$

Conversely, suppose \mathcal{T}' is a topology on A with these properties. In particular, take $(Y, \mathcal{T}_Y) = (A, \mathcal{T}')$ and g = I, the identity function. Since I is trivially continuous, $i \circ I$ is continuous from (A, \mathcal{T}') to (X, \mathcal{T}) . Therefore, for any $U \in \mathcal{T}$, $i^{-1}(U) = U \cap A \in \mathcal{T}'$. Hence $\mathcal{T}_A \subset \mathcal{T}'$.

On the other hand, if we take $(Y, \mathcal{T}_Y) = (A, \mathcal{T}_A)$, and g = I, then since $i \circ I = i$ from (A, \mathcal{T}_A) to (X, \mathcal{T}) is continuous, I is continuous from (A, \mathcal{T}_A) to (A, \mathcal{T}') . Therefore if $V \in \mathcal{T}'$, $I^{-1}(V) = V \in \mathcal{T}_A$, and $\mathcal{T}' \subset \mathcal{T}_A$. Hence $\mathcal{T}' = \mathcal{T}_A$.

1

Product spaces.

Given two sets X_1 and X_2 , the product $X_1 \times X_2$ is defined as the set

$$\{(x_1, x_2); x_1 \in X_1, x_2 \in X_2\}$$

For example, $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$.

Given a product, we recover the co-ordinates by means of the projections;

$$p_1: X_1 \times X_2 \to X_1 \quad p_1(x_1, x_2) = x_1$$
$$p_2: X_1 \times X_2 \to X_2 \quad p_2(x_1, x_2) = x_2$$

and if f is a function from Y to $X_1 \times X_2$, then $p_1 \circ f$ from Y to X_1 and $p_2 \circ f$ from Y to X_2 are the co-ordinate maps.

Conversely, two functions g from Y to X_1 and h from Y to X_2 together determine the function f from Y to $X_1 \times X_2$

$$f(x) = (g(x), h(x)) ,$$

and $p_1 \circ f = g$, $p_2 \circ f = h$.

If we now have topologies \mathcal{T}_1 on X_1 , and \mathcal{T}_2 on X_2 , what topology \mathcal{T} do we need to impose on $X_1 \times X_2$ to ensure that f is continuous from (Y, \mathcal{T}_Y) to $(X_1 \times X_2, \mathcal{T})$ if and only if $p_1 \circ f$ and $p_2 \circ f$ are continuous from (Y, \mathcal{T}_Y) to (X_i, \mathcal{T}_i) .

If we take $(Y, \mathcal{T}_Y) = (X_1 \times X_2, \mathcal{T})$ and f = I, then we need $p_i \circ I = p_i$ continuous from $(X_1 \times X_2, \mathcal{T})$ to (X_i, \mathcal{T}_i) .

Therefore for every $U_i \in \mathcal{T}_i, p_i^{-1}(U_i) \in \mathcal{T}$.

Therefore, \mathcal{T} contains $U_1 \times X_2$ for every $U_1 \in X_1$, and $X_1 \times U_2$ for every $U_2 \in X_2$. Since \mathcal{T} is a topology,

$$(U_1 \times X_2) \cap (X_1 \times U_2) = U_1 \times U_2 \in \mathcal{T} ,$$

and hence \mathcal{T} also contains all unions of sets of this form.

If we denote by \mathcal{T}' the set of all unions of sets of the form $U_1 \times U_2$, where $U_i \in \mathcal{T}_i$, then \mathcal{T}' is a topology on $X_1 \times X_2$.

We prove this by showing that

$$\mathcal{B} = \{U_1 \times U_2 : U_i \in \mathcal{T}_i\}$$

is a basis for \mathcal{T}' .

a) $X_i \in \mathcal{T}_i$, so that $X_1 \times X_2 \in \mathcal{B}$.

b) $(U_1 \times U_2) \cap (V_1 \times V_2) = (U_1 \cap V_1) \times (U_2 \cap V_2)$

If $U_i, V_i \in \mathcal{T}_i, U_i \cap V_i \in \mathcal{T}_i$, so that the intersection of any two elements in \mathcal{B} is also in \mathcal{B} .

Hence \mathcal{B} is a basis which generates \mathcal{T}' .

Now consider the identity map from $(X_1 \times X_2, \mathcal{T}')$ to $(X_1 \times X_2, \mathcal{T})$.

For $p_1 \circ I = p_1$ from $(X_1 \times X_2, \mathcal{T}')$ to (X_1, \mathcal{T}_1) ,

if $U_1 \in \mathcal{T}_1$, then $p_1^{-1}(U_1) = U_1 \times X_2 \in \mathcal{T}'$,

so that the mapping is continuous.

Similarly $p_2 \circ I$ is continuous from $(X - 1 \times X_2, \mathcal{T}')$ to (X_2, \mathcal{T}_2) .

Therefore if \mathcal{T} ensures continuity, I is continuous from $(X_1 \times X_2, \mathcal{T}')$ to $(X_1 \times X_2, \mathcal{T})$, and $\mathcal{T} \subset \mathcal{T}'$.

Hence $\mathcal{T} = \mathcal{T}'$.

We call this topology on $X_1 \times X_2$ the **product topology**.

Note that W is open in $X_1 \times X_2$ with this topology, then W is a union of sets of the form $U_1 \times U_2$, $U_i \in \mathcal{T}_i$, so that if $(x, y) \in W$, $(x, y) \in U_1 \times U_2$ for some U_1 and U_2 open in \mathcal{T}_1 and \mathcal{T}_2 .

We started by looking for a topology which would ensure that f from (Y, \mathcal{T}_Y) would be continuous if and only if $p_i \circ f$ from (Y, \mathcal{T}_Y) to (X_i, \mathcal{T}_i) were continuous, and we have derived the product topology by looking at particular cases.

It remains to show that we have succeeded in general.

First we note that p_1 and p_2 are continuous on the appropriate spaces.

If $U \in \mathcal{T}_1$, then $p_1^{-1}(U) = U \times X_2 \in \mathcal{T}$, so that p_1 is continuous. Similarly for p_2 .

It follows that if f is a continuous function from (Y, \mathcal{T}_Y) to $(X_1 \times X_2, \mathcal{T})$, then $p_1 \circ f$ and $p_2 \circ f$ are continuous.

Conversely, if $p_1 \circ f$ and $p_1 \circ f$ are continuous, then for any $U_1 \in \mathcal{T}_1$ and $U_2 \in \mathcal{T}_2$,

$$f^{-1}(U_1 \times U_2) = f^{-1}((U_1 \times X_2) \cap (X_1 \times U_2))$$

= $f^{-1}(U_1 \times X_2) \cap f^{-1}(X_2 \times U_2)$
= $f^{-1}(p_1^{-1}(U_1)) \cap f^{-1}(p_2^{-1}(U_2))$
= $(p_1 \circ f)^{-1}(U_1) \cap (p_2 \circ f)^{-1}(U_2)$
 $\in \mathcal{T}_Y$

since it is the intersection of two sets in \mathcal{T}_Y .

Since the $\{U_1 \times U_2\}$ are a basis for \mathcal{T} , it follows that f is continuous from Y to $X_1 \times X_2$.