Subspaces.

If we have a topological space (X, \mathcal{T}), then for any non-empty subset $A \subset X$ we obtain a topology for A by taking

$$
\mathcal{T}_{A}=\{U \cap A ; U \in \mathcal{T}\}
$$

Unless otherwise specified, we assume that a subset of a topological space inherits this topology.

This induced topology preserves continuity.
Denote by i the inclusion map from A to X; that is $i(x)=x$ for $x \in A$.
This map is continuous.
If $U \in \mathcal{T}$, then $i^{-1}(U)=U \cap A \in \mathcal{T}_{A}$.
If f is a continuous function from (X, \mathcal{T}) to $\left(Y, \mathcal{T}_{Y}\right)$, then $f \circ i$ is continuous from $\left(A, \mathcal{T}_{A}\right)$ to $\left(Y, \mathcal{T}_{Y}\right)$.

If $U \in \mathcal{T}_{Y}$, then $f^{-1}(U) \in \mathcal{T}$.
Therefore $f^{-1}(U) \cap A \in \mathcal{T}_{A}$.
But $(f \circ i)^{-1}(U)=f^{-1}(U) \cap A$, so that $f \circ i$ is continuous as required.
The function g from $\left(Y, \mathcal{T}_{Y}\right)$ to $\left(A, \mathcal{T}_{A}\right)$ is continuous if and only if $i \circ g$ is continuous from $\left(Y, \mathcal{T}_{Y}\right)$ to (X, \mathcal{T}).

Suppose that g is continuous from Y to A. Then $i \circ g$ is a continuous function of a continuous function and therefore continuous.

Suppose that $i \circ g$ is continuous from Y to X.
Consider $V \in \mathcal{T}_{A}$. $V=U \cap A$ for some $U \in \mathcal{T}$.
Therefore $V=i^{-1}(U)$, and

$$
g^{-1}(V)=g^{-1}\left(i^{-1}(U)\right)=(i \circ g)^{-1}(U) \in \mathcal{T}_{Y}
$$

Conversely, suppose \mathcal{T}^{\prime} is a topology on A with these properties.
In particular, take $\left(Y, \mathcal{T}_{Y}\right)=\left(A, \mathcal{T}^{\prime}\right)$ and $g=I$, the identity function.
Since I is trivially continuous, $i \circ I$ is continuous from $\left(A, \mathcal{T}^{\prime}\right)$ to (X, \mathcal{T}).
Therefore, for any $U \in \mathcal{T}, i^{-1}(U)=U \cap A \in \mathcal{T}^{\prime}$.
Hence $\mathcal{T}_{A} \subset \mathcal{T}^{\prime}$.
On the other hand, if we take $\left(Y, \mathcal{T}_{Y}\right)=\left(A, \mathcal{T}_{A}\right)$, and $g=I$, then since $i \circ I=i$ from $\left(A, \mathcal{T}_{A}\right)$ to (X, \mathcal{T}) is continuous, I is continuous from $\left(A, \mathcal{T}_{A}\right)$ to $\left(A, \mathcal{T}^{\prime}\right)$.

Therefore if $V \in \mathcal{T}^{\prime}, I^{-1}(V)=V \in \mathcal{T}_{A}$, and $\mathcal{T}^{\prime} \subset \mathcal{T}_{A}$.
Hence $\mathcal{T}^{\prime}=\mathcal{T}_{A}$.

Product spaces.

Given two sets X_{1} and X_{2}, the product $X_{1} \times X_{2}$ is defined as the set

$$
\left\{\left(x_{1}, x_{2}\right) ; x_{1} \in X_{1}, x_{2} \in X_{2}\right\}
$$

For example, $\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}$.
Given a product, we recover the co-ordinates by means of the projections;

$$
\begin{array}{ll}
p_{1}: X_{1} \times X_{2} \rightarrow X_{1} & p_{1}\left(x_{1}, x_{2}\right)=x_{1} \\
p_{2}: X_{1} \times X_{2} \rightarrow X_{2} & p_{2}\left(x_{1}, x_{2}\right)=x_{2}
\end{array}
$$

and if f is a function from Y to $X_{1} \times X_{2}$, then $p_{1} \circ f$ from Y to X_{1} and $p_{2} \circ f$ from Y to X_{2} are the co-ordinate maps.

Conversely, two functions g from Y to X_{1} and h from Y to X_{2} together determine the function f from Y to $X_{1} \times X_{2}$

$$
f(x)=(g(x), h(x)),
$$

and $p_{1} \circ f=g, p_{2} \circ f=h$.
If we now have topologies \mathcal{T}_{1} on X_{1}, and \mathcal{T}_{2} on X_{2}, what topology \mathcal{T} do we need to impose on $X_{1} \times X_{2}$ to ensure that f is continuous from $\left(Y, \mathcal{T}_{Y}\right)$ to $\left(X_{1} \times X_{2}, \mathcal{T}\right)$ if and only if $p_{1} \circ f$ and $p_{2} \circ f$ are continuous from $\left(Y, \mathcal{T}_{Y}\right)$ to $\left(X_{i}, \mathcal{T}_{i}\right)$.

If we take $\left(Y, \mathcal{T}_{Y}\right)=\left(X_{1} \times X_{2}, \mathcal{T}\right)$ and $f=I$, then we need $p_{i} \circ I=p_{i}$ continuous from $\left(X_{1} \times X_{2}, \mathcal{T}\right)$ to $\left(X_{i}, \mathcal{T}_{i}\right)$.

Therefore for every $U_{i} \in \mathcal{T}_{i}, p_{i}^{-1}\left(U_{i}\right) \in \mathcal{T}$.
Therefore, \mathcal{T} contains $U_{1} \times X_{2}$ for every $U_{1} \in X_{1}$, and $X_{1} \times U_{2}$ for every $U_{2} \in X_{2}$.
Since \mathcal{T} is a topology,

$$
\left(U_{1} \times X_{2}\right) \cap\left(X_{1} \times U_{2}\right)=U_{1} \times U_{2} \in \mathcal{T},
$$

and hence \mathcal{T} also contains all unions of sets of this form.
If we denote by \mathcal{T}^{\prime} the set of all unions of sets of the form $U_{1} \times U_{2}$, where $U_{i} \in \mathcal{T}_{i}$, then \mathcal{T}^{\prime} is a topology on $X_{1} \times X_{2}$.

We prove this by showing that

$$
\mathcal{B}=\left\{U_{1} \times U_{2}: U_{i} \in \mathcal{T}_{i}\right\}
$$

is a basis for \mathcal{T}^{\prime}.
a) $X_{i} \in \mathcal{T}_{i}$, so that $X_{1} \times X_{2} \in \mathcal{B}$.
b) $\left(U_{1} \times U_{2}\right) \cap\left(V_{1} \times V_{2}\right)=\left(U_{1} \cap V_{1}\right) \times\left(U_{2} \cap V_{2}\right)$

If $U_{i}, V_{i} \in \mathcal{T}_{i}, U_{i} \cap V_{i} \in \mathcal{T}_{i}$, so that the intersection of any two elements in \mathcal{B} is also in \mathcal{B}.

Hence \mathcal{B} is a basis which generates \mathcal{T}^{\prime}.
Now consider the identity map from $\left(X_{1} \times X_{2}, \mathcal{T}^{\prime}\right)$ to $\left(X_{1} \times X_{2}, \mathcal{T}\right)$.
For $p_{1} \circ I=p_{1}$ from $\left(X_{1} \times X_{2}, \mathcal{T}^{\prime}\right)$ to $\left(X_{1}, \mathcal{T}_{1}\right)$,
if $\left.U_{1} \in \mathcal{T}_{1}\right)$, then $p_{1}^{-1}\left(U_{1}\right)=U_{1} \times X_{2} \in \mathcal{T}^{\prime}$,
so that the mapping is continuous.
Similarly $p_{2} \circ I$ is continuous from $\left(X-1 \times X_{2}, \mathcal{T}^{\prime}\right)$ to $\left(X_{2}, \mathcal{T}_{2}\right)$.
Therefore if \mathcal{T} ensures continuity, I is continuous from $\left(X_{1} \times X_{2}, \mathcal{T}^{\prime}\right)$ to ($X_{1} \times$ $\left.X_{2}, \mathcal{T}\right)$, and $\mathcal{T} \subset \mathcal{T}^{\prime}$.

Hence $\mathcal{T}=\mathcal{T}^{\prime}$.

We call this topology on $X_{1} \times X_{2}$ the product topology.
Note that W is open in $X_{1} \times X_{2}$ with this topology, then W is a union of sets of the form $U_{1} \times U_{2}, U_{i} \in \mathcal{T}_{i}$, so that if $(x, y) \in W,(x, y) \in U_{1} \times U_{2}$ for some U_{1} and U_{2} open in \mathcal{T}_{1} and \mathcal{T}_{2}.

We started by looking for a topology which would ensure that f from $\left(Y, \mathcal{T}_{Y}\right)$ would be continuous if and only if $p_{i} \circ f$ from $\left(Y, \mathcal{T}_{Y}\right)$ to $\left(X_{i}, \mathcal{T}_{i}\right)$ were continuous, and we have derived the product topology by looking at particular cases.

It remains to show that we have succeeded in general.
First we note that p_{1} and p_{2} are continuous on the appropriate spaces.
If $U \in \mathcal{T}_{1}$, then $p_{1}^{-1}(U)=U \times X_{2} \in \mathcal{T}$, so that p_{1} is continuous. Similarly for p_{2}.

It follows that if f is a continuous function from $\left(Y, \mathcal{T}_{Y}\right)$ to $\left(X_{1} \times X_{2}, \mathcal{T}\right)$, then $p_{1} \circ f$ and $p_{2} \circ f$ are continuous.

Conversely, if $p_{1} \circ f$ and $p_{1} \circ f$ are continuous, then for any $U_{1} \in \mathcal{T}_{1}$ and $U_{2} \in \mathcal{T}_{2}$,

$$
\begin{aligned}
f^{-1}\left(U_{1} \times U_{2}\right)= & f^{-1}\left(\left(U_{1} \times X_{2}\right) \cap\left(X_{1} \times U_{2}\right)\right) \\
= & f^{-1}\left(U_{1} \times X_{2}\right) \cap f^{-1}\left(X_{2} \times U_{2}\right) \\
= & f^{-1}\left(p_{1}^{-1}\left(U_{1}\right)\right) \cap f^{-1}\left(p_{2}^{-1}\left(U_{2}\right)\right) \\
= & \left(p_{1} \circ f\right)^{-1}\left(U_{1}\right) \cap\left(p_{2} \circ f\right)^{-1}\left(U_{2}\right) \\
& \in \mathcal{T}_{Y}
\end{aligned}
$$

since it is the intersection of two sets in \mathcal{T}_{Y}.
Since the $\left\{U_{1} \times U_{2}\right\}$ are a basis for \mathcal{T}, it follows that f is continuous from Y to $X_{1} \times X_{2}$.

