
Separation

Suppose that we have a sequence {xn} in a topological space (X, T ).
In order to consider the convergence of such a sequence, we consider the corre-

sponding convergence result for a metric space in terms of open sets:
namely: A sequence converges to a limit l ∈ X if every (open) neighbourhood

containing l contains all but a finite number of points of the sequence.

Consequently, we define convergence in (X, T ) by:
A sequence converges to a limit l ∈ X if every open set containing l contains all

but a finite number of points of the sequence.

However, this definition can have some unexpected consequences.
If T = {φ,X}, then every sequence in (X, T ) converges, and every l ∈ X is a

limit of the sequence.
Similarly, if we have a sequence in MATH 3402 which converges to an element

of S11 (say) then every element of S11 is a limit of the sequence.

If we want convergent sequences to have unique limits in X, then we need to
impose further restrictions on the topology of X.

Basicly the problem arises because there are distinct points x1 and x2 such that
every open set containing x1 contains x2. Hence any sequence converging to x2

converges to x1 also.
(In the examples above, this works both ways, but this is not necessary.
If we consider the set {a, b} with the topology {φ, {a}, X}, then every open set

containing b contains a, but not vice-versa.)
This means that x1 is a limit point of the set {x2}, and this latter set is not

closed.
The simplest separation axiom is therefore to require that every set consisting

of a single point be closed.
A topological space satisfying this axiom is called a T1-space.
An equivalent formulation is to require that if x1 and x2 are distinct points, then

there is an open set S1 containing x1 but not x2.
If we have the first form of the axiom, then if {x2} is closed then S1 = \{x2} is

an open set containing x1 but not x2.
Conversely, if we take the second form, then given y ∈ X, for each x 6= y we can

find an open set Sx which contains x but not y.
But then \{y} = ∪xSx is open, and {y} is closed.

Hausdorff Spaces.
A more stringent separation axiom requires that if x1 6= x2, there exist open sets

U1 and U2 such that x1 ∈ U1, x2 ∈ U2, and U1 ∩ U2 = φ. (We say that U1 and U2

are disjoint.)
Spaces with this property are called T2-spaces or Hausdorff spaces.
Spaces for which the topology is derived from a metric are Hausdorff spaces.
Given x1 6= x2, d(x1, x2) = r > 0.
Then we can choose Ui = {d(x, xi) < r

2}.
Every Hausdorff space is obviously a T1-space, but some T1-spaces are not Haus-

dorff spaces.
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Regular Spaces.
A topological space is called regular if for every point x and each closed set V

not containing x, there exist disjoint open sets U1 and U2 such that x ∈ U1 and
V ⊂ U2.

Equivalently, for each point x and each open set U containing x, there is an open
set U1 containing x such that Cl(U1) ⊂ U .

A regular space need not be a T1-space.

For example, the set of students in MATH 3402 together with the topology T3

generated by {S11, S12, S21, S22} is regular but not T1.
Therefore it is usual to consider regular T1-spaces.
Such spaces are denoted T3-spaces.
Every T3-space is Hausdorff, but not the converse.

A similar problem arises with the next class of spaces.

Normal Spaces.
A topological space is normal if for every pair of disjoint closed sets V1 and V2

there exist disjoint open sets U1 and U2 with Vi ⊂ Ui.
The same example as above shows that a normal space need not be a T1-space.
A normal T1-space is denoted a T4-space.

Every T4-space is T3, but again the converse need not apply.

We will consider mainly Hausdorff spaces.

In a Hausdorff space, a convergent sequence has a unique limit.

Suppose that l is a limit of a sequence in X, and that l1 is any other point of X.
Then there are disjoint open sets U1 containing l and U2 containing l1.
Since l is a limit, all but a finite number of terms in the sequence belong to U1,

so that at most a finite number belong to U2.
Therefore l1 is not a limit for the sequence.

Any subspace of a Hausdorff space is Hausdorff.

If Y ⊂ X, and (X, T ) is Hausdorff, then for any two distinct points x1 and x2

in Y , (and hence in X), there are disjoint open sets U1 and U2 in T containing x1

and x2 respectively.
But then V1 = U1 ∩ Y and V2 = U2 ∩ Y are disjoint open sets in the relative

topology which contain x1 and x2 respectively.

Compact sets.
A subset S of a topological space (X, T ) is called compact if every open covering

of S includes a finite subfamily which covers S.

Since a subset consisting of a single point is trivially compact, we see that if the
space is not T1, a compact set need not be closed.

If S is compact as a subset of X then it is compact when we consider S as the
whole space and use the relative topology.

In this case we refer to S as a compact space.



3

A set S ⊂ X is compact if and only if in every family of relatively closed subsets
of S, the intersection of all of which is φ, there is a finite subfamily with the same
property.

If {Vα} is a family of relatively closed subsets with null intersection, then {Uα =
S \ Vα} is an open cover for S.

Therefore there is a finite subcover for S if and only if there is a finite subfamily
of the {Vα} with null intersection.

A closed subset of a compact space is compact.
Let S be a compact space, and C a closed subset of S.
If F is any collection of relatively closed subsets of C whose intersection is φ,

then for each F ∈ F , F is closed in S.
Since S is compact, there is a finite subfamily of F whose intersection is null,

and hence C is compact.

We now consider compactness as applied to Hausdorff spaces.

If C0 and C1 are disjoint compact sets in a Hausdorff space X, there exist disjoint
open sets Wi containing Ci respectively.

Consider first the case in which C0 consists of a single point x0 which is not in
C1.

(Such a set is trivially compact)
Then for every point y ∈ C1, x0 6= y, and there are disjoint open sets Uy and Vy

containing x0 and y respectively.
The sets Vy cover C1, and hence there is a finite subfamily {V1, . . . , Vn} which

covers C1.
Let {U1, . . . , Un} be the corresponding Uy.
Then W0 = ∩ni=1 is an open set containing x0, disjoint from each of the Vi, and

therefore from W1 = ∪ni=1Vi, which is an open set containing C1.
Now consider the case in which C0 is an arbitary compact set disjoint from C1.
For each x in C0, the above construction gives disjoint open sets W0x containing

x and W1x containing C1.
The collection {W0x} is an open cover for C0.
Therefore there is a finite subcollection {W01, . . . ,W0n} which covers C0.
Each element of the corresponding subcollection {W1i} contains C1, so that

W1 = ∩ni=1W1i is an open set containing C1 and disjoint from W0 = ∪ni=1W0i

which is an open set containing C0.

A compact subset of a Hausdorff space is closed.
Suppose C is compact, and x ∈ Cl(C).
If x is not in C, then there are disjoint open sets W0 containing x and W1

containing C.
Therefore x is not a limit point of C either, which is a contradiction.
Therefore, x ∈ C and C = Cl(C).
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Locally Compact Spaces
A topological space is locally compact if every point has a neighbourhood

whose closure is compact.

Any topological space (X, TX) can be embedded in another topological space
(Y, TY ) having just one mopre point than X in such a way that Y is compact and
the relative topology of X as a subset of Y is the original topology of X.

This process is called the one-point compactification of X.
Let y be any point distinct from the points of X.
Let W be the class of open sets W in X such that X \W is compact.
Since φ is compact, X ∈ W.
Let Y = X ∪ {y}.
We choose for the topology TY of Y the topology TX of X together with the sets

W ∪ {y} for W ∈ W.
Note that Y = X ∪ {y} belongs to TY as required.
Now consider any open covering of Y .
Since it covers y, it must contain at least one set of the form W0 ∪ {y}, where

X \W0 is compact in X.
Furthermore, X \W0 is covered by the relatively open sets V ∩X where V is in

the given covering for Y .
Since X \W0 is compact, a finite subfamily of these sets cover X \W0, and these

sets together with W0 ∪ {y} cover Y .
Therefore Y is compact.

If X is a T1-space, so is Y , but it can happen that Y is not Hausdorff even
though X is.

However, if X is a locally compact Hausdorff space, Y will be a Hausdorff space.
Since X as a subset of Y inherits the original topology of X, any two points in

X have the Hausdorff property. Therefore it suffices to consider x ∈ X and the
point y.

Since X is locally compact, there is an open set U containing x such that Cl(U)
is compact.

But then (X \ Cl(U)) ∪ {y} is an open set in Y containing y and disjoint from
U . Therefore Y is Hausdorff.

Conversely, if X and Y are both Hausdorff, X is locally compact.


