
Normed Linear Spaces

Topological Linear Spaces.
A vector space V has two components: a set V of vectors and a field F of

scalars, which will be represented by Greek letters.
In addition to the functions + and × from F × F to F , there are also two

functions: ⊕ from V × V to V , called vector addition, and ⊗ from F × V to V
called scalar multiplication.

In its full generality a vector space should therefore be expressed as

V = {(V ;⊕), (F ; +,×);⊗} .

However it is usual to confuse V with V , and refer to V as the vector space.

Suppose now that the sets V and F have topologies TV and TF respectively.
For example, if V = R

n we have the topology induced by the Euclidean metric,
and if F = R or C we have the usual topology.

If the functions ⊕, ⊗, + and × are continuous with respect to these topologies
and the appropriate induced product topologies we say that resulting entity is a
topological linear space.

In practice, consideration is usually restricted to the real and complex fields, and
to topologies on V induced by a norm.

A norm on a vector space is a real-valued function on V , whose value at x ∈ V
is denoted ||x||, with the properties:

||x1 ⊕ x2|| ≤ ||x1||+ ||x2||(a)

||α⊗ x|| = |α| × ||x||(b)

||x|| ≥ 0(c)

||x|| 6= 0 if x 6= 0(d)

A vector space on which a norm is defined becomes a metric space, referred to
as a normed linear space, if we define

d(x1, x2) = ||x1 	 x2|| .

Most of the examples of metrics considered earlier in the course fall into this
category.

A function f from one normed linear space V to another normed linear space W
is continuous at x0 ∈ V if, given any ε > 0, we can find δ > 0 such that

||f(x)	 f(x0)||W < ε ∀ x ∈ V ; ||x	 x0||V < δ .

The space is called real or complex depending on whether the field F is R or C.
If U is a vector subspace of V , then the norm on V is also a norm on U , so that

U is itself a normed linear space. This space is referred to as a subspace or linear
manifold.

This subspace U may or may not be closed in V , and the distinction between
these cases is often important.

Note that a linear space can be a metric space without being normed, and can
be a topological space without being a metric space.
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The inequalities

||(x1 ⊕ x2)	 (y1 ⊕ y2)|| ≤ ||x1 	 y1||+ ||x2 	 y2||
||α⊗ x	 β ⊗ y|| ≤ |α| × ||x	 y||+ |α− β| × ||y||

show that the operations ⊕ and ⊗ are continuous on a normed linear space.
As a consequence, if M is a linear manifold in X, so is its closure Cl(M).
Note also, that since

| ||x|| − ||y|| | ≤ ||x	 y||

the norm ||.|| is a continuous function on V .

Notation. So far a notational distinction has been made between the operations
of addition in F and V , and between scalar multiplication and multiplication in F .

However, common usage is to use the same symbol (+) for both forms of addition
and no symbol at all for the two forms of multiplication. This usage will be used
from here on.

When we are working with normed linear spaces, we are initially interested in
functions which preserve the linear structure.

A function T from one normed linear space X to another normed linear space
Y is called a linear transformation or linear operator if

T (αx+ βy) = αT (x) + βT (y) .

Note that this means that T (0) = 0.
If T is invertible, and both T and T−1 are continuous, then T induces a homeo-

morphism between X and Y , and the spaces are said to be linearly homeomorphic
or topologically isomorphic.

If in addition, ||T (x)|| = ||x|| for all x ∈ X, the spaces are said to be isometrically
isomorphic or congruent.

Continuity of linear operators is an all-or-nothing affair.
Let T be a linear operator from X to Y .
Then T is continuous either at every point of X or at no point of X.
It is continuous on X if and only if there is a constant M such that ||T (x)|| ≤

M ||x|| for every x ∈ X.

Let x0, x1 ∈ X, and suppose that T is continuous at x0.
Then given any ε > 0, there is δ > 0 such that

||T (x)− T (x0)|| < ε ∀ ||x− x0|| < δ .

Then

||T (y)− T (x1)|| = ||T (y − x1)||
= ||T ((y − x1 + x0)− x0)|| = ||T (y − x1 + x0)− T (x0)|| < ε

∀ ||(y − x1 + x0)− x0|| < δ ; that is ∀||y − x1|| < δ

Therefore T is continuous at x1 also, and hence throughout X.
(In fact T is uniformly continuous on X.)
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If ||T (x)|| ≤M ||x||, then

||T (x)|| = ||T (x)− T (0)|| < ε ∀ ||x− 0|| = ||x|| < 1
M
ε ,

so that T is continuous at x0 = 0, and hence for all x ∈ X.
Conversely, if T is continuous on X, it is continuous at 0, and given ε = 1, there

is δ > 0 such that

||T (x)|| = ||T (x)− T (0)|| < 1 ∀||x|| < δ .

For any x 6= 0 ∈ X, let

y =
δ

2||x||
x

||y|| = δ
2 < δ, so that

||T (y)|| =
∣∣∣∣∣∣∣∣T ( δ

2||x||
x

)∣∣∣∣∣∣∣∣ < 1

||T (x)|| = 2||x||
δ
||T (y)|| < 2

δ
||x|| ≤M ||x||

where M = 2
δ .

Therefore we have ||T (x)|| ≤ M ||x|| for x 6= 0, and the inequality is obviously
true when x = 0 also.

As an example of a linear transformation which is not continuous, consider the
set V of functions continuous on [0, 1].

We can make this set into a normed linear space in a variety of ways.
Specifically, let us construct V1 where the norm is

||f(t)|| = (||f ||1 =)
∫ 1

0

|f(t)| dt ,

and V∞ where the norm is

||f(t)|| = (||f ||∞ =) max
0≤t≤1

|f(t)| .

The linear transformation given by the identity maping on V is not continuous
from V1 to V∞.

Consider the functions

fn(t) =


nt 0 ≤ t ≤ 1

n

2− nt 1
n < t < 2

n

0 2
n ≤ t ≤ 1

for n ≥ 2 .

||fn||1 =
1
n

; ||fn||∞ = 1
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Therefore, given any M > 0, we can find n > M such that

||T (fn)|| = ||fn||∞ = 1 >
M

n
= M ||fn||1 .

If we consider the vectors in X for which ||x|| ≤ 1 this inequality gives

||T (x)|| ≤M ∀ ||x|| ≤ 1 .

Therefore M is an upper bound for {||T (x)||, ||x|| ≤ 1}.
Conversely, if M∗ is an upper bound for these values, then for any x 6= 0∣∣∣∣∣∣∣∣T ( x

||x||

)∣∣∣∣∣∣∣∣ ≤M∗
||T (x)|| ≤M∗||x||

The least upper bound of these numbers is called the norm of the operator T ,
and

||T || = sup
||x||≤1

||T (x)|| = sup
||x||=1

||T (x)|| = sup
x6=0

||T (x)||
||x||

.

For example, consider the linear transformations from C
n to Cm, represented by

the set of m× n matrices with complex coefficients.
Firstly, consider the norm on Cn given by

||x||1 =
n∑
i=1

|ξi|

and the corresponding norm on Cm.

||Ax||1 =
m∑
i=1

∣∣∣∣∣∣
n∑
j=1

aijξj

∣∣∣∣∣∣
≤

m∑
i=1

n∑
j=1

|aij | |ξj |

=
n∑
j=1

(
m∑
i=1

|aij |

)
|ξj |

≤

(
max
j

m∑
i=1

|aij |

)
n∑
j=1

|ξj | =

(
max
j

m∑
i=1

|aij |

)
||x||1

and if this maximum occurs for column J , we have

||AeJ ||1 =
n∑
j=1

|aiJ | ,
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so that this value is attained, and

||A||1 = max
j

m∑
i=1

|aij |

Secondly, consider the norm

||x||∞ = max |ξi| .

||Ax||∞ = max
i

∣∣∣∣∣∣
n∑
j=1

aijξj

∣∣∣∣∣∣
≤ max

i

 n∑
j=1

|aij | |ξj |


≤ max

i

 n∑
j=1

|aij |

max
j
|ξj | = max

i

 n∑
j=1

|aij |

 ||x||∞
and if this maximum occurs for row I, then choosing

xj = e−iθ if aIj = reiθ

shows that it is attained, and

||A||∞ = max
i

 n∑
j=1

|aij |


Finally, if we use the Euclidean norm,

||Ax||22 = x∗A∗Ax

where ∗ denotes the conjugate transpose.
The matrix A∗A is positive semidefinite Hermitian, so that there is a unitary

transformation x = Uy, which is an isometry (||y||2 = ||x||2) and which reduces
x∗A∗Ax to

n∑
i=1

λiη
2
i

where the eigenvalues λi satisfy

λ1 ≥ λ2 ≥ . . . λn ≥ 0

Setting η1 = 1 and the remaining values to 0, we see that

λ1 = ||A||22 and ||A||2 =
√
λ1.
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e.g. Consider

A =
(

0 1
2 3

)
.

||A||1 = max(2, 4) = 4

||A||∞ = max(1, 5) = 5

A∗A =
(

0 2
1 3

)(
0 1
2 3

)
=
(

4 6
6 10

)
|tI −A∗A| =

∣∣∣∣ t− 4 −6
−6 t− 10

∣∣∣∣ = t2 − 14t+ 4

λ1 = 7 +
√

45 = 7 + 3
√

5

||A||2 =
√
λ1 =

3 +
√

5√
2
' 3.7

If T is a continuous linear operator from X to Y , then if S ⊂ {||x|| ≤ r},
T (S) ⊂ {||y|| ≤ ||T ||r}.

Hence T (S) is bounded if S is bounded.

Conversely, if T is a linear operators with the property that T (S) is bounded
whenever S is bounded, then, in particular,

||T (x)|| ≤M ∀ ||x|| ≤ 1

and T is continuous.

There is a similar condition which determines invertibility.

Let T be a linear operator from X to Y .
The inverse T−1 exists and is continuous if and only if there is a constant m > 0

such that
m||x|| ≤ ||T (x)||

for every x ∈ X.

If x 6= 0, ||x|| > 0, so that ||T (x)|| > 0, and T (x) 6= 0.
Therefore, if T (x1) = T (x2), T (x1 − x2) = 0, and x1 = x2.
Hence T is 1− 1 and invertible.

If y = T (x), x = T−1(y) and

m||T−1(y)|| ≤ ||y||

||T−1(y)|| ≤ 1
m
||y||

and T−1 is continuous.
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Conversely, if T−1 exists and is continuous,

||T−1(y)|| ≤M ||y||
1
M
||x|| ≤ ||T (x)|| .

These two results together show that the normed linear spaces X and Y are
topologically isomorphic (linearly homeomorphic) if and only if there is a linear
operator T with domain X and range Y , and positive constants m and M such
that

m||x|| ≤ ||T (x)|| ≤M ||x||

for every x ∈ X.

If we consider X and Y to have the same underlying vector space but different
norms ||.||X and ||.||Y , then choosing T = I we see that these spaces are topologi-
cally equivalent if and only if there exist positive constants m and M such that

m||x||X ≤ ||x||Y ≤M ||x||X

for every vector in the vector space.

Examples of Normed Linear Spaces.
We have already seen that for p ≥ 1

||x||p = (|ξ1|p + · · ·+ |ξn|p)1/p

is a norm on Rn.
The normed linear space obtained by using this norm is denoted `p(n).
When p = 2, we have the usual Euclidean distance function. In this case we

have the alternative notation En for this space, and it is usual to assume that Rn

uses this metric unless otherwise specified.
The limiting case as p→∞,

||x||∞ = max
1≤i≤n

|ξi|

defines the space `∞(n).

These norms are extended to infinite sequences {ξi}.
The space `p consists of all such sequences for which

∞∑
i=1

|ξi|p

converges. (Since these are sums of non-negative terms, this is equivalent to saying
that this sum is bounded.)

The norm in `p is defined by

||x||p =

( ∞∑
i=1

|ξi|p
)1/p

.



8

Similarly we have the space `∞ of bounded sequences for which

||x||∞ = sup
i
|ξi| .

For any x ∈ `∞ we have

sup
n
|ξn| = lim

n→∞

[
lim
p→∞

(|ξ1|p + · · ·+ |ξn|p)1/p

]
.

If
∞∑
i=1

|ξi|p

converges, then for some N , |ξi| < 1 for all i > N .
Therefore, if q > p, |ξi|q ≤ |ξi|p for all i > N , and by the comparison test

∞∑
i=1

|ξi|q

also converges.
Therefore `p ⊂ `q.
Consideration of the sequence {

1
n1/p

}
which is in `q but not in `p shows that this is a proper inclusion.

It can be shown that if x ∈ `p, ||x||q ≤ ||x||p .

The space `p is complete.

Let {xn} be a Cauchy sequence in `p, with xn = {ξ(n)
i }.

For each k we have∣∣∣ξ(n)
k − ξ(m)

k

∣∣∣ ≤ ( ∞∑
i=1

∣∣∣ξ(n)
i − ξ(m)

i

∣∣∣p)1/p

= ||xn − xm||p

so that {ξ(n)
k } is a Cauchy sequence in R or C, which converges to some element ξk.

Since {xn} is a Cauchy sequence, it is bounded; there is some constant B such
that ||xn|| ≤ B for all n.

For any finite M , (
M∑
i=1

|ξ(n)
i |

p

)1/p

≤ ||xn|| ≤ B .

Letting n→∞ in this finite expression gives(
M∑
i=1

|ξi|p
)1/p

≤ B .

Since this is true for arbitrary M ,( ∞∑
i=1

|ξi|p
)1/p

≤ B ,

and x = {ξi} ∈ `p.
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It remains to show that {xn} converges to x.
Given any ε > 0, we can find N such that for m > n > N , ||xm − xn|| < 1

2ε.
Therefore, for any finite M ,(

M∑
i=1

|ξ(m)
i − ξ(n)

i |
p

)1/p

≤ ||xm − xn|| <
1
2
ε .

Again letting m→∞ in this finite expression, we obtain(
M∑
i=1

|ξi − ξ(n)
i |

p

)1/p

≤ 1
2
ε .

Since this is true for arbitrary M , it follows that( ∞∑
i=1

|ξi − ξ(n)
i |

p

)1/p

= ||x− xn|| ≤
1
2
ε < ε

for all n > N , and the sequence converges to x.

Note This form of proof is common when proving completeness in linear spaces.

`p is an example of a Banach Space.
A Banach space is a complete normed linear space.

We have seen that if the metric space X is not complete, we can construct its
completion X̂.

If X and Y are normed linear spaces, and T is a continuous linear operator from
X to Y , then there is a uniquely determined linear operator T̂ from X̂ to Ŷ such
that T̂ (x) = T (x) if x ∈ X. Furthermore, ||T̂ || = ||T ||.

For x̂ ∈ X̂, consider a Cauchy sequence {xn} in X which defines x̂.
Since

||T (xn)− T (xm)|| = ||T (xn − xm)|| ≤ ||T || ||xn − xm||

{T (xn)} is a Cauchy sequence in Y which defines an element ŷ ∈ Ŷ .
We set T̂ (x̂) = ŷ.

If x ∈ X, the sequence {x} shows that T̂ (x) = T (x).
If {xn} → x̂ and {yn} → ŷ, then {αxn + βyn} → αx̂+ βŷ.
Therefore

T̂ (αx̂+ βŷ) = limT (αxn + βyn) = lim(αT (xn) + βT (yn)) = αT̂ (x̂) + βT̂ (ŷ)

and T̂ is linear.
If {xn} → x̂, ||xn|| → ||x̂||. Furthermore

||T (xn)|| ≤ ||T || ||xn|| so that ||T̂ (x̂)|| ≤ ||T || ||x̂||

so that T̂ is continuous, and ||T̂ || ≤ ||T ||.
Since for any x ∈ X,

||T (x)|| = ||T̂ (x)|| ≤ ||T̂ || ||x|| , ||T || ≤ ||T̂ || .

Hence ||T || = ||T̂ ||.
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The spaces Lp.
Let p ≥ 1.
The set Lp(a, b) is the class of functions x of a real variable s such that x(s)

is defined for all s, with the possible exception of a set of measure zero (‘x(s) is
defined almost everywhere’ (a.e.)) and is measurable and |x(s)|p is integrable in
the sense of Lebesgue over the range (a, b). In this definition we can take a = −∞
and/or b =∞.

If Dx is the set on which x is defined, we define αx for α ∈ R as the function
such that

(αx)(s) = α(x(s)) ∀ s ∈ Dx

and x+ y as the function such that

(x+ y)(s) = x(s) + y(s) ∀s ∈ Dx ∩ Dy .

Clearly αx ∈ Lp if x ∈ Lp.
x+ y is obviously measurable. To show that x+ y ∈ Lp if x, y ∈ Lp, we need to

show that |x+ y|p is integrable.
Observe firstly that

max{|a|, |b|} ≤ |a|+ |b| ≤ 2 max{|a|, |b|}

Therefore

|a+ b|p ≤ (|a|+ |b|)p ≤ (2 max{|a|, |b|})p

= max{2p|a|p, 2p|b|p} ≤ 2p|a|p + 2p|b|p

Hence
|(x+ y)(s)|p ≤ 2p|x(s)|p + 2p|y(s)|p

and since the left hand side is measurable and the right hand side is integrable, the
left hand side is also integrable.

Unfortunately, ∫ b

a

|x(s)|p ds = 0

merely tells us that x = 0 almost everywhere on (a, b), so that

(∫ b

a

|x(s)|p ds

)1/p

is not a norm on Lp.
We overcome this difficulty by defining the equivalence relation =0 in Lp by

x =0 y if x = y almost everywhere.
The set of equivalence classes into which Lp is divided by this relation is denoted

Lp.
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If [x] is the class in Lp to which x ∈ Lp belongs, we define the operations

[x] + [y] = [x+ y]

α[x] = [αx]

||[x]||p =

(∫ b

a

|x(s)|p ds

)1/p

for any x ∈ [x]

on Lp.
With this structure, Lp is a normed linear space.

While the elements of Lp are in fact equivalence classes of functions, it is usual
to write x instead of [x]

The case L∞ requires separate treatment.
If (a, b) is a finite or infinite interval in R, we say that a function x, measurable on

(a, b), is essentially bounded if there is some A ≥ 0 such that the set {t; |x(t)| > A}
has measure 0.

The set of all such constants is bounded below by 0, so that there will be a
greatest lower bound for the set.

This smallest possible A is called the essential least upper bound of x, denoted
sup0 |x(t)|.

If L∞ is the class of all measurable and essentially bounded functions on (a, b),
we construct L∞ as before.

With the norm
||[x]|| = 0

sup |x(t)|for some x ∈ [x]

L∞ becomes a normed linear space.

Convergence in Lp.
When we consider a sequence {xn} of functions defined on some set S, there are

a variety of modes of convergence which we can consider.
Firstly, we can consider the sequences {xn(a)} for each element a ∈ S. If the

sequence converges for each such sequence, we say that the sequence converges
pointwise on S.

Suppose that the pointwise limit defines a function x. If, given ε > 0 we can
find an integer N which depends on ε and S but not on the individual point a such
that |xn(a) − x(a)| < ε for n > N for every a ∈ S, we say that the convergence is
uniform. Convergence with respect to the sup norm is uniform.

The spaces Lp offer a different possibility. A sequence {xn} in Lp converges in
the mean (of order p) to x ∈ Lp, if for every ε > 0 there exists N ∈ N such that

||xn − x||p =
(∫
|xn − x|p ds

)1/p

< ε .

It is possible for a sequence of functions to converge in the mean but not point-
wise.
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To illustrate this last point, consider Lp(0, 1) and the intervals

[0, 1], [0,
1
2

], [
1
2
, 1], [0,

1
3

], [
1
3
,

2
3

] [
2
3
, 1],

[0,
1
4

], [
1
4
,

1
2

], [
1
2
,

3
4

], [
3
4
, 1], . . . .

For the nth interval in this sequence define

xn =
{

1 in the interval
0 otherwise

.

If n ≥ m(m+ 1)/2 then ||xn|| ≤ ( 1
m )1/p.

Therefore the sequence {xn} converges in Lp to f = 0.
However, for every s ∈ S, fn(s) = 1 infinitely often and 0 infinitely often.

Therefore the sequence does not converge pointwise.

It is also possible for a sequence of functions to converge uniformly but not
in the mean. However, if the interval is finite, uniform convergence does imply
convergence in the mean.

Linear functionals on Lp.
We begin with Hölder’s inequality in its integral form;∫

|fg| ds ≤ ||f ||p||g||q

where 1
p + 1

q = 1.
This states that if f ∈ Lp and g ∈ Lq, fg ∈ L1.
Suppose that we fix g in Lq.
For every f in Lp,

∫
fg ds is defined, and∫

(αf1 + βf2)g ds = α

∫
f1g ds+ β

∫
f2g ds

so that this defines a linear transformation from Lp into R or C.
Linear transformations of this type are called linear functionals.
Furthermore

||T (f)|| =
∣∣∣∣∫ fg ds

∣∣∣∣ ≤ ∫ |fg| ds ≤ ||g||q ||f ||p
so that this functional is continuous.

We could equally consider f fixed in Lp and let g vary in Lq giving a continuous
linear functional on Lq.

On the other hand, if T is a continuous linear functional from Lp to R, it can be
shown that there is a g ∈ Lq such that

T (f) =
∫
fg ds .

Of special interest is the case p = q = 2.
For f, g ∈ L2, the linear functional

< f, g >=
∫
f̄g ds

is called an inner product.
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The spaces Hp.
Let U denote the class of all functions f(z) of a complex variable z which are

analytic in the unit circle |z| < 1 (at least).
This class is a complex vector space.
We shall consider two examples of subspaces of U which are normed linear spaces.

Firstly, for p > 0, f ∈ U and 0 ≤ r < 1 we define

Mp[f ; r] =
(

1
2π

∫ 2π

0

|f(reiθ)|p dθ
)1/p

The class Hp consists of those f ∈ U such that

sup
0≤r<1

Mp[f ; r] <∞

It can be shown that for p > 0 these classes are closed under addition and scalar
multiplication. Therefore they are subspaces of U.

If we define

||f || = sup
0≤r<1

Mp[f ; r]

then this is a norm for p ≥ 1, but not for 0 < p < 1.
Thus Hp is a normed linear space for p ≥ 1.

We extend our classes to H∞, the class of bounded functions in U. The norm
on H∞ is

||f || = sup
0≤r<1

|f(z)|

For 1 ≤ p <∞, if f ∈ Hp, then limr→1− f(reiθ) exists for almost all values of θ,
defining a function f(eiθ) which belongs to Lp(0, 2π). Furthermore

||f || =
(

1
2π

∫ 2π

0

|f(eiθ)|p dθ
)1/p

which is the same as the norm in Lp.
Thus Hp is in isometric correspondence with a subset of Lp.

The other class of functions of interest is a subset of H∞.
It consists of functions which are analytic in |z| < 1 and continuous on |z| ≤ 1.
By the maximum modulus theorem for analytic functions,

||f || = max
|z|=1

|f(z)|

for this class.
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Finite-Dimensional Normed Linear Spaces.
Let X be a normed linear spaces of finite dimension n ≥ 1. Then X is topologi-

cally isomorphic to `1(n) with the same scalar field.

Suppose that x1, x2, . . . , xn is a basis for X.
Any vector x ∈ X can be represented uniquely as x =

∑n
i=1 ξixi, and the

mapping
x↔ (ξ1, . . . , ξn)

is an isomorphism between X and `1(n).

||x|| =

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

ξixi

∣∣∣∣∣
∣∣∣∣∣ ≤

n∑
i=1

|ξ1| ||xi|| ≤M
n∑
i=1

|ξi|

where M = max ||xi||.
It remains to prove that there is a constant m > 0 such that

m
n∑
i=1

|ξi| ≤

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

ξixi

∣∣∣∣∣
∣∣∣∣∣

If
∑n
i=1 |ξi| = 0, this is trivially true for any m > 0.

Otherwise let
∑n
i=1 |ξi| = c > 0.

The set {
∑n
i=1 |ξi| = c} is compact in `1(n), and the mapping

f(ξ1, . . . ξn) = ||ξ1x1 + . . . ξnxn||

is a continuous map from this set into R.
Therefore this map attains its minimum mc on the set.
If m = 0, then

∑
ξ′ixi = 0 for some set (ξ′1, . . . ξ

′
n) 6= (0, . . . , 0), which implies

that the vectors xi are linearly dependent.
Therefore m > 0, and

m
n∑
i=1

|ξi| = mc ≤

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

ξixi

∣∣∣∣∣
∣∣∣∣∣

as required.

This means that any two normed linear spaces of the same finite dimension with
the same scalar field are topologically isomorphic.

Since `1(n) is complete, it also follows that any finite-dimensional normed linear
space is complete, and that any finite dimensional subspace of a normed linear
space is closed.

Finally, since every closed and bounded set in `1(n) is compact, the same is true
for every closed and bounded set in a finite dimensional normed linear space.

The converse of this result is also true.
Before proving this we have the following lemma.
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Riesz’s Lemma.
Suppose that X is a normed linear space.
Let X0 be a subspace of X which is closed and a proper subset of X.
Then for each 0 < θ < 1 there exists a vector xθ ∈ X such that ||xθ|| = 1 and

||x− xθ|| ≥ θ

for all x ∈ X0.

Select any x1 ∈ X \X0, and let

d = inf
x∈X0

||x− x1|| .

Since X0 is closed, there is some ε neighbourhood of x1 which contains no points
of X0, and it follows that d > 0.

Also, since 0 < θ < 1, θ−1d > d, and since d is the infimum there is some vector
x0 ∈ X0 such that ||x0 − x1|| ≤ θ−1d .

Let xθ = (x1 − x0)/||x1 − x0||. Then ||xθ|| = 1.
Since X0 is a subspace, x0 + ||x1 − x0||x ∈ X0 for every x ∈ X0, and so

||x− xθ|| =
∣∣∣∣∣∣∣∣x− x1 − x0

||x1 − x0||

∣∣∣∣∣∣∣∣
=

1
||x1 − x0||

||(x0 + ||x1 − x0||x)− x1|| ≥
d

||x1 − x0||
≥ θ

for every x ∈ X0.

Therefore, if X0 is a closed and proper subspace of X, there are points on the
unit sphere in X whose distance from X0 is as near 1 as we please.

However, there may not be points on the unit sphere at distance 1 from X0 as
the following example shows.

Let X be the subspace of C(0, 1) consisting of all continuous functions on [0, 1]
such that x(0) = 0.

For X0 we take the subspace of all x ∈ X such that∫ 1

0

x(t) dt = 0 .

Suppose that there is x1 ∈ X such that ||x1|| = 1, and ||x1 − x|| ≥ 1 for all
x ∈ X0.

For each y ∈ X \X0 let

c =
∫ 1

0

x1(t) dt
/∫ 1

0

y(t) dt

Then x1 − cy ∈ X0, and so

1 ≤ ||x1 − (x1 − cy)|| = |c| ||y||
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or ∣∣∣∣∫ 1

0

y(t) dt
∣∣∣∣ ≤ ∣∣∣∣∫ 1

0

x1(t) dt
∣∣∣∣ ||y|| .

Consider the sequence yn(t) = t1/n.
For each n, ||yn|| = 1, and

∫ 1

0
yn(t) dt = n

n+1 .
Therefore ∣∣∣∣∫ 1

0

x1(t) dt
∣∣∣∣ ≥ n

n+ 1
∀ n ∈ N

and therefore ∣∣∣∣∫ 1

0

x1(t) dt
∣∣∣∣ ≥ 1

But x1(0) = 0, x1 is continuous, and |x1| ≤ 1 on [0, 1], so that∣∣∣∣∫ 1

0

x1(t) dt
∣∣∣∣ < 1 ,

and we have a contradiction.
Therefore no such x1 exists.

We are now in a position to prove the converse of the earlier result:
Let X be a normed linear space, and suppose that the surface S of the unit

sphere in X is compact. Then X is finite dimensional.

Suppose that X is not finite dimensional.
Choose x1 ∈ S, and let X1 be the subspace (of dimension 1) generated by x1.

Since X is not of finite dimension, X1 is a proper subspace of X, and because it is
finite dimensional it is closed.

Hence, by Riesz’s lemma, there exists x2 ∈ S such that ||x2 − x1|| ≥ 1
2 .

Let X2 be the (closed and proper) subspace of X generated by x1, x2; then there
exists x3 ∈ S such that ||x3 − x|| ≥ 1

2 for all x ∈ X2. In particular ||x3 − x1|| ≥ 1
2

and ||x3 − x2|| ≥ 1
2 .

Proceding by induction, we obtain an infinite sequence of elements of S such
that ||xn − xm|| ≥ 1

2 if m 6= n.
This sequence can have no convergent subsequence. This contradicts the require-

ment that S be compact. Thus X must be finite dimensional.

Alternatively, we could proceed as follows.
Consider the set of open spheres with radius 1

2 and centres in S. This is an open
cover for S, and hence there is a finite set x1, . . . , xn of points on S such that every
point x ∈ S is distance less than 1

2 from some xi.
Let M be the space generated by the points xi. It is finite dimensional and

therefore closed.
If M is a proper subset of X, then by Riesz’s lemma there is a point x ∈ S whose

distance from every point of M is greater than or equal to 1
2 .

Since this is impossible, M = X, and X is finite dimensional.


