Metrics

A metric is a way of measuring the distance between objects in a set.
Given a set S, a metric on S is a function d from $S \times S$ to \mathbb{R} such that for all $x, y, z \in S$,

$$
\begin{aligned}
& \text { (i) } \quad d(x, x)=0 \\
& \text { (ii) } \quad d(x, y)>0, x \neq y \\
& \text { (iii) } \quad d(x, y)=d(y, x) \\
& \text { (iv) } \quad d(x, z) \leq d(x, y)+d(y, z)
\end{aligned}
$$

For most metrics, the first three properties are usually obviously satisfied.
The fourth property, known as the Triangle Inequality, commonly requires a bit more effort to verify.

Examples:

The following functions are metrics on the stated sets:

1. $S=\mathbb{R}$;

$$
d(x, y)=|x-y|
$$

(i) $d(x, x)=|x-x|=|0|=0$
(ii) $|x-y| \geq 0$, and $|x-y|=0$ if and only if $x-y=0$; that is $x=y$.
(iii) $d(y, x)=|y-x|=|x-y|=d(x, y)$.
(iv) For any real number, $x \leq|x|$.

Therefore

$$
\begin{aligned}
|x+y|^{2} & =(x+y)^{2} \\
& =x^{2}+2 x y+y^{2} \\
& \leq|x|^{2}+2|x||y|+|y|^{2} \\
& =(|x|+|y|)^{2}
\end{aligned}
$$

Since $|x|+|y| \geq 0$, we have

$$
|x+y| \leq|x|+|y|
$$

and hence

$$
|x-z|=|(x-y)+(y-z)| \leq|x-y|+|y-z| .
$$

2. $S=\mathbb{R}^{n}$;

$$
\begin{aligned}
d(\underline{x}, \underline{y}) & =\left(\sum_{i=1}^{n}\left(x_{1}-y_{i}\right)^{2}\right)^{1 / 2} \\
& =((\underline{x}-\underline{y}) \cdot(\underline{x}-\underline{y}))^{1 / 2} \\
& =\|\underline{x}-\underline{y}\|
\end{aligned}
$$

This is usually referred to as the Euclidean metric.
To prove (iv), consider

$$
(\underline{x}+t \underline{y}) \cdot(\underline{x}+t \underline{y})=\|\underline{x}\|^{2}+2 t(\underline{x} \cdot \underline{y})+t^{2}\|\underline{y}\|^{2}
$$

where t is a real variable.
Since this quadratic expression in t is always ≥ 0, the discriminant

$$
4\|\underline{x}\|^{2}\|\underline{y}\|^{2}-4(\underline{x} . \underline{y})^{2}
$$

is non-negative.
Therefore

$$
\begin{gathered}
\underline{x} \cdot \underline{y} \leq\|\underline{x}\|\|\underline{y}\| \\
\|\underline{x}+\underline{y}\|^{2}=\|\underline{x}\|^{2}+2 \underline{x} \cdot \underline{y}+\|\underline{y}\|^{2} \\
\leq\|\underline{x}\|^{2}+2\|\underline{x}\|\|\underline{y}\|+\|\underline{y}\|^{2}=(\|\underline{x}\|+\|\underline{y}\|)^{2} \\
\|\underline{x}+\underline{y}\| \leq\|\underline{x}\|+\|\underline{y}\|
\end{gathered}
$$

and

$$
\begin{aligned}
d(x, z) & =\|\underline{x}-\underline{z}\| \\
& =\|\underline{x}-\underline{y}+\underline{y}-\underline{z}\| \\
& \leq\|\underline{x}-\underline{y}\|+\|\underline{y}-\underline{z}\| \\
& \leq d(x, y)+d(y, z)
\end{aligned}
$$

3. $S=\mathbb{C}$;

$$
d\left(z_{1}, z_{2}\right)=\left|z_{1}-z_{2}\right| .
$$

Since

$$
\left|z_{1}-z_{2}\right|=\left(\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}\right)^{1 / 2}
$$

this is covered by the previous example.
4. $S=\mathbb{R}^{n}$;

$$
d(\underline{x}, \underline{y})=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|
$$

This is sometimes known as the taxi cab metric.

Since

$$
\begin{gathered}
\left|x_{i}-z_{i}\right|=\left|x_{i}-y_{i}+y_{i}-z_{i}\right| \leq\left|x_{i}-y_{i}\right|+\left|y_{i}-z_{i}\right| \\
d(\underline{x}, \underline{z}) \leq d(\underline{x}, \underline{y})+d(\underline{y}, \underline{z}) .
\end{gathered}
$$

5. $S=\mathbb{R}^{n}$;

$$
d(\underline{x}, \underline{y})=\max _{i}\left|x_{i}-y_{i}\right|
$$

This is known as the sup metric.

$$
\begin{aligned}
d(\underline{x}, \underline{z})= & \left|x_{j}-z_{j}\right| \quad \text { for some } j \\
& \leq\left|x_{j}-y_{j}\right|+\left|y_{j}-z_{j}\right| \\
& \leq d(\underline{x}, \underline{y})+d(\underline{y}, \underline{z})
\end{aligned}
$$

6. S arbitrary;

$$
\begin{gathered}
d(x, y)=1, x \neq y \\
d(x, x)=0
\end{gathered}
$$

(This is known as the discrete metric.)
To prove the triangle inequality, we note that if $z=x$,

$$
d(x, z)=0 \leq d(x, y)+d(y, z)
$$

for any choice of y,
while if $z \neq x$ then either $z \neq y$ or $x \neq y$ (at least) so that

$$
d(x, y)+d(y, z) \geq 1=d(x, z)
$$

7. S is the set of all real continuous functions on $[a, b]$.

$$
d(f, g)=\left(\int_{a}^{b}(f(x)-g(x))^{2} d x\right)^{\frac{1}{2}}
$$

This is the continuous equivalent of the Euclidean metric in \mathbb{R}^{n}.
The proof of the triangle inequality follows the same form as in that case.
8. S as in 7 .

$$
d(f, g)=\max _{a \leq x \leq b}|f(x)-g(x)| .
$$

This is the continuous equivalent of the sup metric.
The proof of the triangle inequality is virtually identical.
9. S arbitrary;
$d(x, y)=D(x, y) /(1+D(x, y))$, where $D(x, y)$ is another metric on S.

$$
\begin{gathered}
d(x, y)+d(y, z)-d(x, z) \\
=\frac{D(x, y)(1+D(y, z)+D(x, z)+D(y, z) D(x, z))}{(1+D(x, y))(1+D(y, z))(1+D(x, z))} \\
+\frac{D(y, z)(1+D(x, y)+D(x, z)+D(x, y) D(x, z))}{(1+D(x, y))(1+D(y, z))(1+D(x, z))} \\
-\frac{D(x, z)(1+D(y, z)+D(x, y)+D(y, z) D(x, y))}{(1+D(x, y))(1+D(y, z))(1+D(x, z))} \\
=\frac{D(x, y)+D(y, z)-D(x, z)}{(1+D(x, y))(1+D(y, z))(1+D(x, z))} \\
+\frac{2 D(x, y) D(y, z)+D(x, y) D(y, z) D(x, z)}{(1+D(x, y))(1+D(y, z))(1+D(x, z))}
\end{gathered}
$$

$$
\geq 0
$$

since the denominator is positive, and the numerator is non-negative.
10. Let f be a twice differentiable real function defined for $x \geq 0$, and such that
(a)

$$
\begin{aligned}
f(0) & =0 \\
f^{\prime}(x) & >0 x \geq 0 \\
f^{\prime \prime}(x) & \leq 0 x \geq 0
\end{aligned}
$$

(c)

Then if $d(x, y)$ is a metric on the set S, so is $f(d(x, y))$.
Since $f^{\prime}(x)>0$, we have from the Mean Value Theorem

$$
\begin{gathered}
f(x)-f(y)=f^{\prime}(\theta)(x-y) \\
f(x)>f(y), x>y
\end{gathered}
$$

In particular, since $f(0)=0$,

$$
f(x)>0, x>0
$$

If $a \geq 0$ and $s \geq 0$, then by the Mean Value Theorem we also have

$$
\begin{gathered}
f^{\prime}(a+s)-f^{\prime}(s)=f^{\prime \prime}(\theta) s \leq 0 \\
f^{\prime}(a+s) \leq f^{\prime}(s)
\end{gathered}
$$

and if $b \geq 0$ also

$$
\begin{gathered}
\int_{0}^{b} f^{\prime}(a+s) d s \leq \int_{0}^{b} f^{\prime}(s) d s \\
f(a+b)-f(a) \leq f(b)-f(0)=f(b) \\
f(a+b) \leq f(a)+f(b)
\end{gathered}
$$

Since $d(x, z) \leq d(x, y)+d(y, z)$,

$$
\begin{aligned}
f(d(x, z)) & \leq f(d(x, y)+d(y, z)) \\
& \leq f(d(x, y))+f(d(y, z)
\end{aligned}
$$

THREE IMPORTANT INEQUALITIES

Definitions:
If p and q are both >1, we say that they are dual indices if

$$
\frac{1}{p}+\frac{1}{q}=1 .
$$

For $\underline{x} \in \mathbb{R}^{n}$, we define

$$
\|\underline{x}\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

Young's inequality.
For x and y positive real numbers, and dual indices p and q,

$$
x y \leq \frac{1}{p} x^{p}+\frac{1}{q} y^{q} .
$$

Proof
Fix $y>0$, and consider the function

$$
f(x)=x y-\frac{1}{p} x^{p}
$$

for $x>0$.

$$
f^{\prime}(x)=y-x^{p-1} ; f^{\prime \prime}(x)=-(p-1) x^{p-2}<0
$$

Therefore f has a global maximum when $y=x^{p-1}, x=y^{1 /(p-1)}$, and

$$
x y-\frac{1}{p} x^{p} \leq y^{1+1 /(p-1)}-\frac{1}{p} y^{p /(p-1)}=\frac{1}{q} y^{q}
$$

Hölder's inequality
For \underline{x} and \underline{y} in \mathbb{R}^{n},

$$
\sum_{i=1}^{n}\left|x_{i} y_{i}\right| \leq\|\underline{x}\|_{p}\|\underline{y}\|_{q}
$$

where p and q are dual indices.
Proof
If either $\underline{x}=\underline{0}$ or $y=\underline{0}$ the result is trivially true.
Otherwise, for each i

$$
\frac{\left|x_{i}\right|}{\|\underline{x}\|_{p}} \geq 0, \frac{\left|y_{i}\right|}{\|\underline{y}\|_{q}} \geq 0
$$

and therefore by Young's inequality

$$
\frac{\left|x_{i}\right|\left|y_{i}\right|}{\|\underline{x}\|_{p}| | \underline{y} \|_{q}} \leq \frac{1}{p} \frac{\left|x_{i}\right|^{p}}{\|\underline{x}\|_{p}^{p}}+\frac{1}{q} \frac{\left|y_{i}\right|^{q}}{\|\underline{y}\|_{q}^{q}}
$$

Summing from $i=1$ to n, we have

$$
\frac{1}{\|\underline{x}\|_{p}\|\underline{y}\|_{q}} \sum_{i=1}^{n}\left|x_{i} y_{i}\right| \leq \frac{1}{p}+\frac{1}{q}=1 .
$$

Minkowski's inequality
For \underline{x} and \underline{y} in \mathbb{R}^{n}, and $p>1$,

$$
\begin{aligned}
&\|\underline{x}+\underline{y}\|_{p} \leq\|\underline{x}\|_{p}+\|\underline{y}\|_{p} \\
&\|\underline{x}+\underline{y}\|_{p}^{p}= \sum_{i=1}^{n}\left|x_{i}+y_{i}\right|\left|x_{i}+y_{i}\right|^{p-1} \\
& \leq \sum_{i=1}^{n}\left|x_{i}\right|\left|x_{i}+y_{i}\right|^{p-1}+\sum_{\mid i=1}^{n}\left|y_{i} \| x_{i}+y_{i}\right|^{p-1} \\
& \leq\|\underline{x}\|_{p}\left(\sum_{i-1}^{n}\left|x_{i}+y_{i}\right|^{(p-1) q}\right)^{1 / q} \\
&+\|\underline{y}\|_{p}\left(\sum_{i-1}^{n}\left|x_{i}+y_{i}\right|^{(p-1) q}\right)^{1 / q} \\
&=\left(\|\underline{x}\|_{p}+\|\underline{y}\|_{p}\right)\left[\left(\sum_{i=1}^{n}\left|x_{i}+y_{i}\right|^{p}\right)^{1 / p}\right]^{p / q} \\
&=\left(\|\underline{x}\|_{p}+\|\underline{y}\|_{p}\right)\|\underline{x}+\underline{y}\|_{p}^{p-1}
\end{aligned}
$$

Minkowski's inequality shows that

$$
d(\underline{x}, \underline{y})=\|\underline{x}-\underline{y}\|_{p}
$$

is a metric on \mathbb{R}^{n}.
If we consider the limits $p \rightarrow 1$ and $p \rightarrow \infty$, we obtain the taxicab and sup metrics which we have already seen.

The Euclidean metric corresponds to $p=2$.
These metrics can be extended to infinite real sequences

$$
\left\{x_{i}\right\}_{i=1}^{\infty}
$$

If l^{p} is the set of all sequences $\left\{x_{i}\right\}$ for which

$$
\sum_{i=1}^{\infty}\left|x_{i}\right|^{p} ; p \geq 1
$$

converges, then the norm

$$
\|\underline{x}\|_{p}=\left(\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

induces a metric on l^{p} in the same way as the finite form does on \mathbb{R}^{n}.
When $p=1, l^{1}$ is the set of all sequences with absolutely convergent sums.
For $p \rightarrow \infty$, we take

$$
\|\underline{x}\|_{\infty}=\sup _{i}\left|x_{i}\right|
$$

and l^{∞} is the set of all bounded sequences.
Note that the harmonic sequence $\left\{x_{n}=\frac{1}{n}\right\}$ is not in l^{1}, but is in l^{p} for all $p>1$.

We can also extend these metrics to the continuous case.
For the set of functions continuous on $[a, b]$, we have the metrics

$$
d_{p}(f, g)=\|f-g\|_{p}=\left(\int_{a}^{b}|f(x)-g(x)|^{p} d x\right)^{1 / p}
$$

for $p \geq 1$.

Sequences and Convergence

In what follows, it is assumed that we have some set S with an associated metric d. The combination (S, d) is called a metric space.

Definition: A sequence $\left\{a_{n}\right\}$ converges in (S, d) if and only if there is $l \in S$ such that, for each $\epsilon>0$ there is a positive integer N such that for all $n \geq N$ we have $d\left(a_{n}, l\right)<\epsilon$.

Note that convergence depends on both the set S, since the limit must belong to S, and on the metric d.

For example, if d is the discrete metric, a sequence converges if and only if all the terms from some point on are the same.

Definition: An epsilon neighbourhood of $a \in S$ is the set of all $x \in S$ such that $d(x, a)<\epsilon$.
(Note that this implies that $\epsilon>0$.)

Definition: A set $Q \subset S$ is called a neighbourhood of a if Q contains an epsilon neighbourhood of a.

Theorem: A sequence $\left\{a_{n}\right\}$ converges to l iff every neighbourhood of l contains all but a finite number of terms of the sequence.

Suppose Q is a neighbourhood of l. Then for some $\epsilon>0$, the set $\{d(x, l)<\epsilon\} \subset$ Q.

Since $\left\{a_{n}\right\}$ converges to l, there is an integer N such that $d\left(a_{n}, l\right)<\epsilon$ for all $n>N$.

Therefore $a_{n} \in Q$ for all $n>N$.
Conversely, if every neighbourhood of l contains all but a finite number of terms of the sequence, then for any $\epsilon>0$ this is true for the epsilon neighbourhood $\{d(x, l)<\epsilon\}$.

That is, there is some integer N such that if $n>N, d\left(a_{n}, l\right)<\epsilon$.

Theorem: If $\left\{a_{n}\right\}$ converges, then the limit is unique.
Suppose that the sequence converges to l_{1}. Choose any other $l_{2} \neq l_{1}$, and let $\epsilon=\frac{1}{2} d\left(l_{1}, l_{2}\right)>0$.

Since l_{1} is a limit for the sequence, all but a finite number of the terms of the sequence are in the neighbourhood $\left\{d\left(x, l_{1}\right)<\epsilon\right\}$.

Now, for each a_{n} in the sequence,

$$
\begin{aligned}
& d\left(l_{1}, l_{2}\right) \leq d\left(l_{1}, a_{n}\right)+d\left(a_{n}, l_{2}\right) \\
& d\left(l_{2}, a_{n}\right) \geq d\left(l_{1}, l_{2}\right)-d\left(a_{n}, l_{1}\right)
\end{aligned}
$$

so that

$$
d\left(l_{2}, a_{n}\right)>\epsilon
$$

for all but a finite number of terms in the sequence.
Since the epsilon neighbourhood of l_{2} contains at most a finite number of terms of the sequence, l_{2} cannot be a limit for the sequence.

Definition: A set $Q \subset S$ is said to be bounded if for any $a \in Q$, there is a real number k such that $d(x, a)<k$ for all $x \in Q$.

Boundedness depends on both the set Q and the metric d.
For example, in \mathbb{R} with the standard metric $d(x, y)=|x-y|$, a set Q is bounded if there is some constant k such that $|x|<k$ for all $x \in Q$.

On the other hand, if we choose the metric

$$
d(x, y)=\frac{|x-y|}{1+|x-y|}
$$

all sets are bounded, since $d(x, y)<1$ for all x, y.
Theorem: If $\left\{a_{n}\right\}$ converges to l, then $\left\{a_{n}\right\}$ is bounded.
Given $\epsilon=1$, there is an integer N such that

$$
d\left(a_{n}, l\right)<1, \text { for all } n>N
$$

For any $a \in S$, consider the finite set of real numbers

$$
d\left(a_{1}, a\right), d\left(a_{2}, a\right), \ldots, d\left(a_{N}, a\right),(d(l, a)+1)
$$

Since the set is finite, it contains a maximum element m.
Choose $k>m$.
By construction $d\left(a_{n}, a\right)<k$ for $n \leq N$, while if $n>N$,

$$
d\left(a_{n}, a\right) \leq d\left(a_{n}, l\right)+d(l, a)<1+d(l, a)<k .
$$

Definition: A sequence $\left\{a_{n}\right\}$ is Cauchy iff for each $\epsilon>0$ there is a positive integer N such that if $m, n \geq N$, then

$$
d\left(a_{n}, a_{m}\right)<\epsilon
$$

As before, a convergent sequence is Cauchy.
Our concern is in determining under what conditions a Cauchy sequence is convergent.

If every Cauchy sequence in (S, d) converges, then we say that the metric space is complete.

Consider the set S of real functions, continuous on $[0,1]$.
We will make this a metric space by considering the metrics 7 and 8 . and consider the sequence

$$
\left\{x^{n}\right\}, 0 \leq x \leq 1
$$

This is a Cauchy sequence with respect to the metric defined in 7 .
Suppose, without loss of generality, that $m>n$.

$$
\begin{aligned}
\int_{0}^{1}\left(x^{m}-x^{n}\right)^{2} d x & =\int_{0}^{1}\left(x^{2 m}-2 x^{m+n}+x^{2 n}\right) d x \\
& =\frac{1}{2 m+1}-\frac{2}{m+n+1}+\frac{1}{2 n+1} \\
& <\frac{1}{2 n+1}+\frac{1}{2 n+1}=\frac{2}{2 n+1}<\frac{1}{n}
\end{aligned}
$$

Therefore

$$
d\left(x^{m}, x^{n}\right)<\frac{1}{\sqrt{n}}<\epsilon \text { for all } m>n>\left[\frac{1}{\epsilon^{2}}\right]
$$

However, the limit of this sequence is the function

$$
f(x)=\left\{\begin{array}{l}
0,0 \leq x<1 \\
1, x=1
\end{array}\right.
$$

which is not continuous, and therefore not in S.
Therefore this Cauchy sequence does not converge in (S, d).
On the other hand, $\max _{0 \leq x \leq 1}\left|x^{n}-x^{2 n}\right|=1 / 4$, and hence $\left\{x^{n}\right\}, 0 \leq x \leq 1$, is not a Cauchy sequence with respect to the sup metric defined in 8 .

$$
\frac{d}{d x}\left(x^{n}-x^{2 n}\right)=n x^{n-1}-2 n x^{2 n-1}=0
$$

when $x^{n}=\frac{1}{2}$, which is a maximum.
Since $x^{n}-x^{2 n}=\frac{1}{4}, d\left(x^{n}, x^{2 n}\right)=\frac{1}{4}$.
Hence there is no N such that

$$
d\left(x^{m}, x^{n}\right)<\frac{1}{8} \text { for all } m>n>N
$$

