Metrics

A metric is a way of measuring the distance between objects in a set.

Given a set S, a metric on S is a function d from S x S to R such that for all
T,Y,z € Sa

(i) d(x,x)=0;
(i) d(z,y) >0,z # y;
(4ii) d(z,y) = d(y,z);

() d(z,z) < d(x,y) + d(y, 2)

For most metrics, the first three properties are usually obviously satisfied.
The fourth property, known as the Triangle Inequality, commonly requires a bit
more effort to verify.

Examples:

The following functions are metrics on the stated sets:

1. §=R;

d(z,y) = |z -yl .

(i) d(z,2) = |z — x| = 0] = 0
(ii) |t —y| > 0, and |x — y| = 0 if and only if z — y = 0; that is z = y.

(iii) d(y, z) = |y — | = [z —y| = d(z,y).
(iv) For any real number, z < |z|.
Therefore

z+y|* = (z +y)*
= 2% 4+ 22y + ¢
< Ja? + 2fzl[y| + [y
=(lz| +yl)?

Since |z| + |y| > 0, we have
[z +y| < |z|+ [yl
and hence

[z -zl =z-y)+ -2 <lz—yl+ly—2z[.
1



2. §=R";

n 1/2
d(z, Q) = (Z(l‘l - yi)2>

1=1

= ((z—y)-(z—y)

= ||z —y|

1/2

This is usually referred to as the Euclidean metric.

To prove (iv), consider

(z+ty).(z + ty) = ||| + 2t(z.y) + *||yl?

where t is a real variable.
Since this quadratic expression in ¢ is always > 0, the discriminant

41zl Iyl — 4(zy)”

is non-negative.

Therefore
z.y < ||z [|y]]
llz + ylI? = llz]]* 4 2z.y + [|y[|?
2
< |lz/1* + 2/ ||yl + llyl1> = (lz|| + lly])
|z +yl| < [lz|] + [ly]]
and
d(z,z) = ||z — 2]|
=llz—y+y—2z
<llz —yll + lly — 2l
< d(x,y) +d(y, 2)
3. 5=C;
d(zl,z2) = ’2’1 — 22‘ .
Since

1/2
21 — 2] = (21— 22)% + (1 — 12)*) "

this is covered by the previous example.

4. § =R"

d(z,y) =) |z —y;
i=1

This is sometimes known as the taxi cab metric.



Since
zi — zi| = vi —yi +yi — zi| < @i —yil + |y — 2

d(z,z) < d(z,y) +d(y, z) -

5. § =R";

d(z,y) = max EZE

This is known as the sup metric.

d(z,z) = |x; — z;| for some j
< oy —yil + |y — 2l
< d(z,y) +d(y, z)

6. S arbitrary;

dr,y) =1,z # y
d(z,z) =0 .

(This is known as the discrete metric.)
To prove the triangle inequality, we note that if z = x,
d(z,z) =0 < d(z,y) + d(y, z)

for any choice of y,
while if z # x then either z # y or = # y (at least) so that

d(z,y)+d(y,z) > 1=d(z,2)

7. S is the set of all real continuous functions on |[a, b].

A(f,g) = ( / (f(z) - g<x>>2dx>

This is the continuous equivalent of the Euclidean metric in R".

1
2

The proof of the triangle inequality follows the same form as in that case.

8. Sasin 7.
d(f,g) = max [f(z) —g(x)|
This is the continuous equivalent of the sup metric.

The proof of the triangle inequality is virtually identical.



9. S arbitrary;
d(z,y) = D(z,y)/(1 + D(z,y)), where D(z,y) is another metric on S.

d(iE‘, y) + d(y7 Z) - d(ajv Z)

D(y,2)(1+ D(z,y) + D(x, z)
(1+ D(z,y))(1+ D(y,2))(1 + D(x, 2
)

(1+ D(z,y))(1+ D(y,2))(1 + D(x, z
D(.Z’,y)+D(y,Z) —D(.Z’,Z)
(1+ D(z,y))(1 + D(y, 2))(1 + D(z, 2))
2D(z,y)D(y,z) + D(x,y)D(y, z) D(x, z)
(1+ D(z,y))(1+ D(y,2))(1 + D(z, 2)
>0

since the denominator is positive, and the numerator is non-negative.

10. Let f be a twice differentiable real function defined for z > 0, and such that

(a) F(0)=0
(b) fl(x)>0x>0
(c) f'(x) <0z >0

Then if d(z,y) is a metric on the set S, so is f(d(x,y)).
Since f’(x) > 0, we have from the Mean Value Theorem

f(x) = f(y) = f(0)(z—y)
fl@)>fly), z>y.

In particular, since f(0) =0,
flz)>0, >0.
If a >0 and s > 0, then by the Mean Value Theorem we also have

flla+s)—f'(s)=f"(0)s<0

and if b > 0 also

Since d(z, z) < d(z,y) + d(y, z),
fld(z,2)) < fd(z,y) + d(y, )
<f



THREE IMPORTANT INEQUALITIES

Definitions:
If p and ¢ are both > 1, we say that they are dual indices if

For x € R™, we define

n 1/p
lzllp = (Z Iﬂ«“ilp>
i=1
Young’s inequality.

For z and y positive real numbers, and dual indices p and ¢,
1 1
xy < —aP + —y? .
p q

Proof
Fix y > 0, and consider the function

f(z) =2y — %x

for x > 0.
fl@)=y—a"1; f"(x)=—(p—1)2P? <0

Therefore f has a global maximum when y = 2P~ !, = y/(?=1 and

Ty — lxp < gttt/ =) lyp/(p—l) - lyq
p p q
Holder’s inequality
For z and y in R",

n
> lzigil < llllp llyllq
=1

where p and ¢ are dual indices.

Proof
If either z =0 or y = 0 the result is trivially true.
Otherwise, for each ¢

i il

>0, 120 >0
JEA]™ lyllq
and therefore by Young’s inequality
zallysl 1wl 1 gl
< - 5+ — 7
zllpllylle ~ pllzllz — allyllg

Summing from ¢ = 1 to n, we have

1 " 1 1
- IL‘yS——f-—:l
Tl Tl 2= 7% <5+ 5



Minkowski’s inequality
For z and y in R", and p > 1,

llz + yllp < llzllp + lyllp -

n

lz + I8 =" |z + il |2 + yaP

=1
<O fwillw +ylPT D (il P!
i=1 li=1

n 1/q
< lzlp (Z |lz; + yil(pl)q>

1—1

n 1/q
+ [yl (Z |z; + yz'l(pl)‘I)

i—1
1/p P/4

= (lellp + gl (2_; s + yr>

= (llzlly +llyllp) llz + llp ™
Minkowski’s inequality shows that

d(z,y) = [lz — yllp

is a metric on R".

If we consider the limits p — 1 and p — oo, we obtain the taxicab and sup
metrics which we have already seen.
The Euclidean metric corresponds to p = 2.

These metrics can be extended to infinite real sequences

If [P is the set of all sequences {x;} for which

o]
Sl s p>1
1=1

00 1/p
||z||, = (Z !fci!p>
i=1

induces a metric on (P in the same way as the finite form does on R".

converges, then the norm

When p = 1, ! is the set of all sequences with absolutely convergent sums.
For p — oo, we take
||z|[oc = sup |z;]
7
and [*° is the set of all bounded sequences.

Note that the harmonic sequence {z, = %} is not in [, but is in [P for all p > 1.



We can also extend these metrics to the continuous case.

For the set of functions continuous on [a, b], we have the metrics

b 1/p
dp(f,9) =1f —gllp = (/ f(2) — g(2)]” dﬂ?)

for p > 1.

SEQUENCES AND CONVERGENCE

In what follows, it is assumed that we have some set S with an associated metric
d. The combination (S,d) is called a metric space.

Definition: A sequence {a, } converges in (.59, d) if and only if there is [ € S such
that, for each € > 0 there is a positive integer N such that for all n > N we have
d(an,l) < e.

Note that convergence depends on both the set .S, since the limit must belong
to S, and on the metric d.

For example, if d is the discrete metric, a sequence converges if and only if all
the terms from some point on are the same.

Definition: An epsilon neighbourhood of a € S is the set of all x € S such that
d(z,a) < e.
(Note that this implies that ¢ > 0.)

Definition: A set Q C S is called a neighbourhood of a if ) contains an epsilon
neighbourhood of a.

Theorem: A sequence {a,} converges to [ iff every neighbourhood of [ contains
all but a finite number of terms of the sequence.

Suppose @ is a neighbourhood of I. Then for some € > 0, the set {d(z,l) < €} C
0.

Since {a,} converges to [, there is an integer N such that d(a,,l) < € for all
n > N.

Therefore a,, € Q for all n > N.

Conversely, if every neighbourhood of | contains all but a finite number of terms
of the sequence, then for any ¢ > 0 this is true for the epsilon neighbourhood
{d(z,l) < €}.

That is, there is some integer N such that if n > N, d(a,,l) < e.

Theorem: If {a,} converges, then the limit is unique.

Suppose that the sequence converges to I;. Choose any other I, # [1, and let
€= %d(ll,lg) > 0.

Since [; is a limit for the sequence, all but a finite number of the terms of the
sequence are in the neighbourhood {d(z,1;) < €}.



Now, for each a,, in the sequence,

d(l17l2) S d(lluan) + d(an7l2)
d(lz,an) > d(l1,1l2) — d(an, 1)

so that
d(lg, an) > €

for all but a finite number of terms in the sequence.
Since the epsilon neighbourhood of I contains at most a finite number of terms
of the sequence, 5 cannot be a limit for the sequence.

Definition: A set () C S is said to be bounded if for any a € @, there is a real
number £ such that d(z,a) < k for all x € Q.

Boundedness depends on both the set ) and the metric d.

For example, in R with the standard metric d(x,y) = |z —y|, a set @ is bounded
if there is some constant k such that |z| < k for all z € Q.

On the other hand, if we choose the metric

lz —y

d -

all sets are bounded, since d(x,y) < 1 for all z,y.

Theorem: If {a,} converges to [, then {a, } is bounded.

Given € = 1, there is an integer N such that
d(an,l) <1, forallmn > N .
For any a € S, consider the finite set of real numbers
d(ay,a),d(az,a),...,dlan,a),(d(l,a)+ 1) .

Since the set is finite, it contains a maximum element m.
Choose k > m.
By construction d(a,,a) < k for n < N, while if n > N,

d(ay,a) < d(an,l)+d(l,a) <1+d(l,a) <k.

Definition: A sequence {a,} is Cauchy iff for each ¢ > 0 there is a positive
integer NV such that if m,n > N, then

d(an,an) < €.

As before, a convergent sequence is Cauchy.

Our concern is in determining under what conditions a Cauchy sequence is con-
vergent.

If every Cauchy sequence in (S, d) converges, then we say that the metric space
is complete.



Consider the set S of real functions, continuous on [0, 1].

We will make this a metric space by considering the metrics 7 and 8. and consider
the sequence

{z"},0< < 1

This is a Cauchy sequence with respect to the metric defined in 7.
Suppose, without loss of generality, that m > n.

1 1
/ (z™ — 2™ do = / (2™ — 2™ 4 22™) da
0 0

1 2 N 1
C2m+1 m4n+1 2n+1
_ 1 N 12 <1
n+1 2n+1 2n+1 n

Therefore

1 1
dz™,2") < —= < eforall m >n > [—] :

vn €2

However, the limit of this sequence is the function

f(2) 0,0<z<1
) =
1, z=1

which is not continuous, and therefore not in S.
Therefore this Cauchy sequence does not converge in (.5, d).

On the other hand, maxg<,<1 |2 — 2%"| = 1/4, and hence {z"},0 < x < 1, is
not a Cauchy sequence with respect to the sup metric defined in 8.

d

dx

when z" = %, which is a maximum.
: n 2n __ 1 n .2n\ _ 1
Since 2" — 2" = 7, d(2",2°") = ;.
Hence there is no N such that

(2" — 2®) = na" ! = 2na®" =0

1
d(z™,z") < 3 forallm >n >N .



