
Inner Product Spaces

An inner product on a complex linear spaceX is a function 〈x|y〉 fromX×X → C

such that

〈x1 + x2|y〉 = 〈x1|y〉+ 〈x2|y〉(1)

〈y|x〉 = 〈x|y〉(2)

〈x|αy〉 = α〈x|y〉(3)

〈x|x〉 > 0 for x 6= 0(4)

Consequently,

〈αx|y〉 = ᾱ〈x|y〉(5)

〈x|y1 + y2〉 = 〈x|y1〉+ 〈x|y2〉(6)

Where the underlying field is R, the conjugations can be omitted.
If X is an inner-product space, we define a norm on X by

||x|| =
√
〈x|x〉 ,

and we have
|〈x|y〉| ≤ ||x|| ||y|| .

The spaces `2 and L2(a, b) are inner-product spaces with the inner products

〈x|y〉 =
∞∑
i=1

ξ̄iηi

and

〈x|y〉 =
∫ b

a

x(t)y(t) dt

respectively.

Orthogonality. We say that x and y are orthogonal if 〈x|y〉 = 0. (In complex
spaces the term unitary is also used.)

If x and y are orthogonal, we write

x⊥y

Note that if x⊥y then y⊥x, and that x⊥0 for all x ∈ X.
If x is orthogonal to every element of a set S, we say that x is orthogonal to the

set, and write x⊥S.
Since the inner product is linear, it follows that if x⊥y and x⊥z then x⊥(αy+βz)

for all α, β.
Hence if x⊥S, x is also orthogonal to the space spanned by S.
Finally, since the inner product is continuous it follows that if x⊥yn and yn → y

then x⊥y.
Combined with the previous result we see that if x⊥S, x is orthogonal to the

closure of the space generated by S.
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A set S = {xi} of vectors is an orthogonal set if xi⊥xj = 0 for i 6= j.
If, in addition, ||xi|| = 1 for each i, we say that the set is orthonormal.
An orthonormal set of vectors is linearly independent.
Let x =

∑n
i=1 γiui be any linear combination of vectors from an orthomormal

set. Then

〈uj |x〉 =
n∑
i=1

γi〈uj |ui〉 = γj

Therefore x = 0 if and only if γi = 0 ∀i, and the vectors are linearly independent.

Consequently, if {ui}ni=1 is a finite orthonormal set, then it is a basis for the
space M which it spans, and if x ∈M ,

x =
n∑
i=1

〈ui|x〉ui .

Bessel’s inequality
Let S be an orthonormal set in X.
If u1, . . . un is any finite collection of distinct elements of S, and x ∈ X, then

n∑
i=1

|〈ui|x〉|2 ≤ ||x||2 .

Write ξi = 〈ui|x〉 and y = x−
∑n
i=1 ξiui. Then

0 ≤ 〈y|y〉 = 〈x|x〉 −
n∑
i=1

ξi〈x|ui〉 −
n∑
i=1

ξ̄i〈ui|x〉+
n∑
i=1

n∑
j=1

ξ̄iξj〈ui|uj〉

Since 〈ui|uj〉 = δij the last sum collapses, and since 〈x|ui〉 = ξ̄i we have

0 ≤ ||x||2 −
n∑
i=1

|ξi|2 −
n∑
i=1

|ξi|2 +
n∑
i=1

|ξi|2

as required.

It follows that for any fixed x ∈ X, the number of elements u ∈ S for which
〈x|u〉 6= 0 is countable.

For any positive integer n, the number of elements u for which |〈x|u〉| > 1
n is at

most n2||x||2.
Therefore the number of u for which 〈x|u〉 6= 0 is a countable union of finite sets,

which is countable.

Finally, from Cauchy’s (Hölder’s) inequality

n∑
i=1

|〈x|ui〉〈ui|y〉| ≤

(
n∑
i=1

|〈x|ui〉|2
)1/2( n∑

i=1

|〈y|ui〉|2
)1/2

≤ ||x|| ||y|| .
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The previous results have not assumed that the orthonormal set is countable.
While in almost all cases of interest this will be the case, it is possible to construct

uncountable orthonormal sets.
For example, we can construct such a set by considering any uncountable set Q

and taking as our vector space the set X of all complex valued functions bounded
on Q which vanish almost everywhere.

If Qx is the set of points q ∈ Q at which x(q) 6= 0, and Qy is the set of points at
which y(q) 6= 0, we can define

〈x|y〉 =
∑

q∈Qx∩Qy

x(q)y(q) .

The set of funtions up(q) = δpq, p ∈ Q is now an uncountable orthonormal set in
X.

If however X contains a countable dense subset Y , (X is separable) then any
orthonormal set S in X is countable.

We start by remarking that if x 6= u ∈ S,then

〈x− u|x− u〉 = 〈x|x〉 − 〈x|u〉 − 〈u|x〉+ 〈u|u〉 = 2

so that ||x− u|| =
√

2 for distinct members of an orthonormal set.
Now suppose that {yn} is a countable dense subset of X, and consider any two

distinct elements x, u of S.
Since this subset Y is dense in X, given ε =

√
2/3, we can find yn1 and yn2 such

that

||x− yn1 || <
√

2
3

||u− yn2 || <
√

2
3

But then

√
2 = ||x− u|| ≤ ||x− yn1 ||+ ||yn1 − yn2 ||+ ||yn2 − u||

<
2
√

2
3

+ ||yn1 − yn2 ||

||yn1 − yn2 || >
√

2
3

yn1 6= yn2

and there is a 1− 1 correspondence between the elements of S and a subset of Y .
Therefore S is countable.
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Suppose that the space X is complete, and that {ui} is a countably infinite
orthonormal set in X.

Then a series of the form
∞∑
i=1

ξiui

is convergent if and only if
∞∑
i=1

|ξ|2 <∞ .

If the sum of the series is x, then

ξi = 〈ui|x〉 .

If sn =
∑n
i=1 ξiu1, and m > n, then

||sm − sn||2 =

∣∣∣∣∣
∣∣∣∣∣

m∑
i=n+1

ξiui

∣∣∣∣∣
∣∣∣∣∣
2

=
m∑

i=n+1

|ξi|2

and the sequence {sn} is Cauchy in X ( and therefore converges since X is complete)
if and only if

∑
|ξi|2 converges.

Since ξi = 〈ui|sn〉 for 1 ≤ i ≤ n, and sn converges to x, we have

〈ui|x〉 = lim
n→∞

〈ui|sn〉 = ξi .

Note that
∑
|ξi|2 converges absolutely, and therefore the convergence is unaf-

fected by arbitrary reordering of the terms.
This means that the convergence of

∑
ξiui is also independent of the ordering

of the ui.

Suppose that S is an orthonormal set in the complete inner-product space X.
If x ∈ X, then there are at most a countable number of elements of S for which

〈u|x〉 6= 0.
Index these by {ui} and consider∑

i

〈ui|x〉ui .

Since
n∑
i=1

|〈ui|x〉|2 ≤ ||x||2 for each n,

∞∑
i=1

|〈ui|x〉|2 <∞ ,

and ∑
i

〈ui|x〉ui

converges to some element xS in the closed manifold generated by S.
By construction, (x − xS)⊥ui for each element in the subset, and for other

elements u ∈ S, 〈u|x〉 = 0 and 〈u|ui〉 = 0 so that 〈u|xS〉 = 0 also.
Therefore (x− xS)⊥S and hence (x− xs)⊥M .
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Complete orthonormal sets.
An orthonormal set S ⊂ X is complete in X if there is no orthonormal set in X

of which S is a proper subset.
Provided the inner-product space X is complete and is not the zero space, we

can construct a complete orthonormal set in X, and if S is an orthonormal set in
X, we can construct this set so that S is a subset.

We proceed inductively:
Since X contains at least one non-zero vector x1, it contains the normal vector

u1 = x1/||x1||. The set S1 = {u1} is an orthonormal set in X.
Suppose that S is any orthonormal set in X. Let M be the closed linear manifold

generated by S.
If M = X, x =

∑
〈ui|x〉ui for each x ∈ X, and therefore x⊥S if and only if

x = 0. Therefore S is complete.
Otherwise, we can find some vector x ∈ X \M , and (x− xS)⊥S.
Setting u = (x− xS)/||x− xS ||, S ∪ {u} is an orthonormal set containing S.
That this process terminates is a consequence of Zorn’s Lemma.

If the space X is separable then there is a countable complete orthonormal set
S in X.

Since X is separable, there is a countable set {xn} which is dense in X.
Let y1 be the first nonzero element in this set, y2, the first (nonzero) element

which is not in the space generated by y1, and in general yk+1 the first element
which is not in the space generated by {y1, . . . yk}.

The set {ym} generates the same linear manifold M as {xn}, and since the set
{xn} is dense in X, M = X.

Applying the Gram-Schmidt process to {ym} now generates an orthonormal set
S which is countable, and since it generates X it is complete.

Parseval’s Formula.
Let S be an orthonormal set in X.
If

||x||2 =
∑
u∈S
|〈u|x〉|2

for every x ∈ X, then S is complete.
If x⊥S, then ||x||2 = 0, x = 0, and hence S is complete.
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Hilbert Spaces.
A Hilbert space is a complete, infinite dimensional inner-product space.
In most applications, the space is also separable so that there is a countable

orthonormal basis for the space.
However, as we have seen it is possible to produce spaces with uncountable

orthonormal sets.

The spaces L2(a, b) are separable; the usual orthonormal sets for these spaces
are given in terms of the classical ”orthogonal polynomials”:

For L2(−1, 1), the Legendre polynomials

Pn(t) =
1

2nn!
dn

dtn
(
t2 − 1)

)n
satisfy ∫ 1

−1

Pn(t)Pm(t) dt = 0 ∀ n 6= m .

The normalised set {
√
n+ 1

2Pn(t)} is an orthonormal basis.
For other finite intervals we can scale the variables appropriately.
For L2(0,∞), the Laguerre polynomials

Ln(t) = et
dn

dtn
(
tne−t

)
satisfy ∫ ∞

0

e−tLn(t)Lm(t) dt = 0 ∀ n 6= m .

The set {φn(t)} where

φn(t) =
1
n!
e−t/2Ln(t)

is a complete orthonormal set for this space.
Finally for L2(−∞,∞), we have the Hermite polynomials

Hn(t) = (−1)net
2 dn

dtn
e−t

2

which satisfy ∫ ∞
−∞

e−t
2
Hn(t)Hm(t) dt = 0∀ n 6= m .

In this case the orthonomal set is {(2nn!
√
π)−1/2e−t

2/2Hn(t)}.


