Compactness and Completeness

We have seen that if S is a compact set (in a topological space), then every infinite subset of S has an accumulation point in S.

Note that this means that the interval [0, 1] considered as a subset of \mathbb{Q} is closed and bounded in \mathbb{Q} but is not compact.

The converse holds for metric spaces:

If S is a set in a metric space with the property that every infinite subset of S has an accumulation point in S, then S is compact.

To show this, we first show that if $S \subset (X, d)$ has this property, then there is a countable family \mathcal{N} of open sets $N \subset X$ such that, if U is any open set in X and $x \in S \cap U$, there is some $N \in \mathcal{N}$ for which $x \in N \subset U$.

For each positive integer n we can find a finite set of points $x_1, \ldots, x_{f(n)}$ in S such that the sets $\{d(x, x_i) < \frac{1}{n}\}$ cover S.

If this were not so, there would be some n and a infinite sequence $\{x_i\}$ in S for which $d(x_i, x_j) \ge \frac{1}{n}$ for $i \ne j$. Since this sequence could not have a limit point in S, this contradicts the assertion about S.

The collection of all these open sets constitutes \mathcal{N} .

Now, for any $x \in S \cap U$, $x \in U$ which is open, so that there is some $\epsilon > 0$ such that $\{d(y, x) < \epsilon\} \subset U$.

Let $\frac{1}{n} < \frac{\epsilon}{2}$. The collection of open sets associated with this value of n cover S, therefore $x \in N$ for one of them, and $N \subset \{d(y, x) < \epsilon\} \subset U$.

Now suppose that \mathcal{U} is an open covering of S.

We specify a subfamily \mathcal{N}^* of \mathcal{N} as follows:

 $N \in \mathcal{N}^*$ iff $N \subset U$ for some $U \in \mathcal{U}$.

Since \mathcal{U} covers S, every $x \in S$ is in $S \cap U$ for some U and therefore in some $N \in \mathcal{N}^*$, so that \mathcal{N}^* covers S also.

Now, for each $N \in \mathcal{N}^*$ we choose one set U in \mathcal{U} such that $N \subset U$. This subset \mathcal{U}^* of \mathcal{U} is countable and covers S.

Index the sets in \mathcal{U}^* by U_1, U_2, \ldots .

If no finite subcollection of \mathcal{U}^* covers S, then there must be a point x_n in $S \setminus (U_1 \cup \cdots \cup U_n)$ for each n.

This infinite set $\{x_n\}$ has a limit point $x_0 \in S$.

Therefore $x_0 \in U_N$ for some N.

Since x_0 is a limit point and U_N is open, infinitely many terms in the sequence $\{x_n\}$ lie in U_N .

In particular, for some n > N, $x_n \in U_N$, which is a contradiction.

Therefore some finite subcollection of \mathcal{U}^* , which is in turn a subcollection of \mathcal{U} covers S, and S is compact.

Hence, in a metric space a set S is compact if and only if every infinite subset of S has an accumulation point in S.

Equivalently, in a metric space, a set S is compact if and only if every sequence in S contains a convergent subsequence with limit in S.

Completeness.

We have seen that if $\{x_n\}$ is a convergent sequence in the metric space (X, d), then given any $\epsilon > 0$ there is an integer N such that

$$d(x_m, x_n) < \epsilon \ \forall \ m, n > N$$

This is Cauchy's Criterion.

A sequence which satisfies Cauchy's criterion, (without necessarily converging) is called a Cauchy sequence.

A metric space X with the property that every Cauchy sequence in X has a limit in X is said to be **complete**.

If the metric space (X, d) is not complete, and completeness is considered desirable, then there are two alternatives.

We can change either X or d.

The first process is called **completion**.

For example, this is the process by which the rational numbers are extended to become the real numbers.

Firstly, we define *isometry*.

Two metric spaces (X, d_X) and (Y, d_Y) are isometric if there is a one to one function f from X to Y such that

$$d_X(x_1, x_2) = d_Y(f(x_1), f(x_2))$$

for every pair of points $x_1, x_2 \in X$.

The fundamental result is as follows.

Let (X, d_X) be an incomplete metric space.

There exists a complete metric space (Y, d_Y) and a subset Y_0 dense in Y such that X and Y_0 are isometric.

Let $\{x_n\}$ and $\{x'_n\}$ be Cauchy sequences in X.

We say that these sequences are equivalent, $\{x_n\} \sim \{x'_n\}$, if $d_X(x_n, x'_n) \to 0$ as $n \to \infty$.

This relation is reflexive, symmetric and transitive, and hence divides the set of all Cauchy sequences in X into equivalence classes.

Our space Y is the set of all these equivalence classes. We define the metric d_Y on Y:

If $\{x_n\}$ and $\{x'_n\}$ are Cauchy sequences in X, then $d_X(x_n, x'_n)$ is a Cauchy sequence in \mathbb{R} .

Given any $\epsilon > 0$, there exist N_1 and N_2 such that $d_X(x_m, x_n) < \frac{\epsilon}{2}$ for all $m, n > N_1$, and $d_X(x'_m, x'_n) < \frac{\epsilon}{2}$ for all $m, n > N_2$.

Then for $m, n > \max(N_1, N_2)$,

$$\begin{aligned} |d_X(x_n, x'_n) - d_X(x_m, x'_m)| \\ &= |d_X(x_n, x'_n) - d_X(x_m, x'_n) + d_X(x_m, x'_n) - d_X(x_m, x'_m)| \\ &\le |d_X(x_n, x'_n) - d_X(x_m, x'_n)| + |d_X(x_m, x'_n) - d_X(x_m, x'_m)| \\ &\le d_X(x_n, x_m) + d_X(x'_n, x'_m) < \epsilon \end{aligned}$$

Since \mathbb{R} is complete, this sequence converges, and we set

$$d_Y(\{x_n\}, \{x'_n\}) = \lim_{n \to \infty} d_X(x_n, x'_n)$$

This limit is unchanged if we replace $\{x_n\}$ and $\{x'_n\}$ by equivalent series $\{a_n\}$ and $\{a'_n\}$, since

$$|d_X(x_n, x'_n) - d_X(a_n, a'_n)| \le d_X(x_n, a_n) + d_X(x'_n, a'_n)$$

in the same way as above, and the right hand side goes to zero as $n \to \infty$.

Among the Cauchy sequences in X we have those for which $x_n = x$ for all n.

The equivalence classes to which these sequences belong form a subset Y_0 of Y, and for x, x' in X, the mapping from X to Y_0 which maps x onto $\{x\}$ is obviously one-one, and

$$d_Y(\{x\}, \{x'\}) = \lim_{n \to \infty} d_X(x, x') = d_X(x, x')$$

so that this mapping is an isometry.

Now consider $Cl(Y_0)$.

If $y \in Y$, there is a Cauchy sequence $\{x_n\}$ in X which defines y. Given any $\epsilon > 0$, there is an integer N such that $d_X(x_n, x_N) < \frac{\epsilon}{2}$ for all n > N. Let $y_0 \in Y_0$ be the class containing the constant sequence $\{x_N\}$. Then

$$d_Y(y, y_0) = \lim_{n \to \infty} d_X(x_n, x_N) \le \frac{\epsilon}{2} < \epsilon$$

and $y \in Cl(Y_0)$. Therefore $Cl(Y_0) = Y$, and Y_0 is dense in Y.

Finally, we show that Y is complete.

Suppose that $\{y_n\}$ is a Cauchy sequence in Y.

For each n, choose a $z_n \in Y_0$ such that $d_Y(y_n, z_n) < \frac{1}{n}$. (This is possible since Y_0 is dense in Y.)

Now

$$d_Y(z_n, z_m) \le d_Y(z_n, y_n) + d_Y(y_n, y_m) + d_Y(y_m, z_m) < \frac{1}{n} + d_Y(y_n, y_m) + \frac{1}{m}$$

so that $\{z_n\}$ is a Cauchy sequence in Y.

To each $z_n \in Y_0$, we can associate an element $x_n \in X$, and

$$d_X(x_n, x_m) = d_Y(z_n, z_m)$$

therefore $\{x_n\}$ is a Cauchy sequence in X, which defines an element $y \in Y$. Now,

$$d_Y(y_n, y) \le d_Y(y_n, z_n) + d_Y(z_n, y)$$

$$< \frac{1}{n} + d_Y(z_n, y)$$

$$< \frac{1}{n} + \lim_{m \to \infty} d_X(x_n, x_m)$$

so that $\{y_n\}$ converges to $y \in Y$, and Y is complete.

In practice we identify X and Y_0 , and regard X as a dense set in Y.

Alternatively, we could adjoin the elements of $Y \setminus Y_0$ to X to form a space \hat{X} isometric to Y in which X is a dense set.

This space is called the completion of X.