
Compactness and Completeness

We have seen that if S is a compact set (in a topological space), then every
infinite subset of S has an accumulation point in S.

Note that this means that the interval [0, 1] considered as a subset of Q is closed
and bounded in Q but is not compact.

The converse holds for metric spaces:
If S is a set in a metric space with the property that every infinite subset of S

has an accumulation point in S, then S is compact.

To show this, we first show that if S ⊂ (X, d) has this property, then there is a
countable family N of open sets N ⊂ X such that, if U is any open set in X and
x ∈ S ∩ U , there is some N ∈ N for which x ∈ N ⊂ U .

For each positive integer n we can find a finite set of points x1, . . . , xf(n) in S

such that the sets {d(x, xi) < 1
n} cover S.

If this were not so, there would be some n and a infinite sequence {xi} in S for
which d(xi, xj) ≥ 1

n for i 6= j. Since this sequence could not have a limit point in
S, this contradicts the assertion about S.

The collection of all these open sets constitutes N .
Now, for any x ∈ S ∩ U , x ∈ U which is open, so that there is some ε > 0 such

that {d(y, x) < ε} ⊂ U .
Let 1

n <
ε
2 . The collection of open sets associated with this value of n cover S,

therefore x ∈ N for one of them, and N ⊂ {d(y, x) < ε} ⊂ U .

Now suppose that U is an open covering of S.
We specify a subfamily N ∗ of N as follows:
N ∈ N ∗ iff N ⊂ U for some U ∈ U .
Since U covers S, every x ∈ S is in S ∩ U for some U and therefore in some

N ∈ N ∗, so that N ∗ covers S also.
Now, for each N ∈ N ∗ we choose one set U in U such that N ⊂ U . This subset

U∗ of U is countable and covers S.
Index the sets in U∗ by U1, U2, . . . .
If no finite subcollection of U∗ covers S, then there must be a point xn in

S \ (U1 ∪ · · · ∪ Un) for each n.
This infinite set {xn} has a limit point x0 ∈ S.
Therefore x0 ∈ UN for some N .
Since x0 is a limit point and UN is open, infinitely many terms in the sequence

{xn} lie in UN .
In particular, for some n > N , xn ∈ UN , which is a contradiction.
Therefore some finite subcollection of U∗, which is in turn a subcollection of U

covers S, and S is compact.

Hence, in a metric space a set S is compact if and only if every infinite subset
of S has an accumulation point in S.

Equivalently, in a metric space, a set S is compact if and only if every sequence
in S contains a convergent subsequence with limit in S.
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Completeness.
We have seen that if {xn} is a convergent sequence in the metric space (X, d),

then given any ε > 0 there is an integer N such that

d(xm, xn) < ε ∀ m,n > N .

This is Cauchy’s Criterion.
A sequence which satisfies Cauchy’s criterion, (without necessarily converging)

is called a Cauchy sequence.

A metric space X with the property that every Cauchy sequence in X has a
limit in X is said to be complete.

If the metric space (X, d) is not complete, and completeness is considered desir-
able, then there are two alternatives.

We can change either X or d.
The first process is called completion.
For example, this is the process by which the rational numbers are extended to

become the real numbers.

Firstly, we define isometry.
Two metric spaces (X, dX) and (Y, dY ) are isometric if there is a one to one

function f from X to Y such that

dX(x1, x2) = dY (f(x1), f(x2))

for every pair of points x1, x2 ∈ X.

The fundamental result is as follows.
Let (X, dX) be an incomplete metric space.
There exists a complete metric space (Y, dY ) and a subset Y0 dense in Y such

that X and Y0 are isometric.

Let {xn} and {x′n} be Cauchy sequences in X.
We say that these sequences are equivalent, {xn} ∼ {x′n}, if dX(xn, x′n) → 0 as

n→∞.
This relation is reflexive, symmetric and transitive, and hence divides the set of

all Cauchy sequences in X into equivalence classes.
Our space Y is the set of all these equivalence classes.
We define the metric dY on Y :
If {xn} and {x′n} are Cauchy sequences in X, then dX(xn, x′n) is a Cauchy

sequence in R.
Given any ε > 0, there exist N1 and N2 such that dX(xm, xn) < ε

2 for all
m,n > N1, and dX(x′m, x

′
n) < ε

2 for all m,n > N2.
Then for m,n > max(N1, N2),

|dX(xn, x′n)− dX(xm, x′m)|
= |dX(xn, x′n)− dX(xm, x′n) + dX(xm, x′n)− dX(xm, x′m)|
≤ |dX(xn, x′n)− dX(xm, x′n)|+ |dX(xm, x′n)− dX(xm, x′m)|

≤ dX(xn, xm) + dX(x′n, x
′
m) < ε
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Since R is complete, this sequence converges, and we set

dY ({xn}, {x′n}) = lim
n→∞

dX(xn, x′n)

This limit is unchanged if we replace {xn} and {x′n} by equivalent series {an}
and {a′n}, since

|dX(xn, x′n)− dX(an, a′n)| ≤ dX(xn, an) + dX(x′n, a
′
n)

in the same way as above, and the right hand side goes to zero as n→∞.

Among the Cauchy sequences in X we have those for which xn = x for all n.
The equivalence classes to which these sequences belong form a subset Y0 of Y ,

and for x, x′ in X, the mapping from X to Y0 which maps x onto {x} is obviously
one-one, and

dY ({x}, {x′}) = lim
n→∞

dX(x, x′) = dX(x, x′)

so that this mapping is an isometry.

Now consider Cl(Y0).
If y ∈ Y , there is a Cauchy sequence {xn} in X which defines y.
Given any ε > 0, there is an integer N such that dX(xn, xN ) < ε

2 for all n > N .
Let y0 ∈ Y0 be the class containing the constant sequence {xN}. Then

dY (y, y0) = lim
n→∞

dX(xn, xN ) ≤ ε

2
< ε

and y ∈ Cl(Y0). Therefore Cl(Y0) = Y , and Y0 is dense in Y .

Finally, we show that Y is complete.
Suppose that {yn} is a Cauchy sequence in Y .
For each n, choose a zn ∈ Y0 such that dY (yn, zn) < 1

n . (This is possible since
Y0 is dense in Y .)

Now

dY (zn, zm) ≤ dY (zn, yn) + dY (yn, ym) + dY (ym, zm)

<
1
n

+ dY (yn, ym) +
1
m

so that {zn} is a Cauchy sequence in Y .
To each zn ∈ Y0, we can associate an element xn ∈ X, and

dX(xn, xm) = dY (zn, zm)

therefore {xn} is a Cauchy sequence in X, which defines an element y ∈ Y .
Now,

dY (yn, y) ≤ dY (yn, zn) + dY (zn, y)

<
1
n

+ dY (zn, y)

<
1
n

+ lim
m→∞

dX(xn, xm)

so that {yn} converges to y ∈ Y , and Y is complete.

In practice we identify X and Y0, and regard X as a dense set in Y .
Alternatively, we could adjoin the elements of Y \ Y0 to X to form a space X̂

isometric to Y in which X is a dense set.
This space is called the completion of X.


