
Contraction mappings

Applications and extensions

The contraction mapping theorem can also be used as a theoretical tool.

In particular, it can be used to prove the existence and uniqueness of the solution
of the initial value problem

y′ = f(x, y) ; y(a) = b

under certain conditions on the function f .

Suppose that f : R2 → R is continuous on the rectangle

R = [a− h, a+ h]× [b− k, b+ k]

and on this rectangle satisfies the additional (Lipschitz) condition that there is a
constant M such that

|f(x, y1)− f(x, y2)| ≤M |y1 − y2|

for all (x, y1), (x, y2) ∈ R.
(In particular, this condition will be satisfied if ∂f/∂y exists and is bounded in

R.)
Then there is an α > 0 such that the initial value problem has a unique solution

for a− α ≤ x ≤ a+ α .

We begin by modifying R if necessary to ensure that any solution remains
bounded by b− k and b+ k.

Since R is closed and bounded in R2, it is compact.
Since f is continuous on R, its range is compact in R.
In particular, it is bounded; there exists a constant K such that

|f(x, y)| ≤ K ∀ x, y ∈ R .

Therefore, any solution in R is bounded by the lines

y − b = ±K(x− a) .

If k ≥ Kh, this region is bounded by b− k and b+ k for x ∈ [a− h, a+ h].
Otherwise, set h′ = k/K, and reduce the region R appropriately;

R′ = [a− h′, a+ h′]× [b− k, b+ k] .

Since R′ ⊂ R, the conditions on f are unaffected by this change.

Next we replace the differential equation by an integral equation:
If y(x) is a solution of the differential equation, then y is differentiable.
Therefore y is continuous, and f(x, y(x)) is a continuous function of x. Hence it

is integrable, and ∫ x

a

y′(t) dt =
∫ x

a

f(t, y(t)) dt

y(x) = b+
∫ x

a

f(t, y(t)) dt .

1



2

Conversely, if y(x) is a solution of this integral equation, then y(x) is continuous
since the right-hand side of the equation is continuous.

Therefore the integrand f(t, y(t)) is continuous, and by the fundamental theorem
of the calculus ∫ x

a

f(t, y(t)) dt

is differentiable, and
d

dx

∫ x

a

f(t, y(t)) dt = f(x, y(x))

Hence y is a solution of the initial value problem also.

We now need to show that the mapping

F(φ) = b+
∫ x

a

f(t, φ(t)) dt

derived from the integral equation is a contraction mapping on an appropriate
complete metric space. If it is, then the fixed point y of the mapping is the unique
solution of the integral equation.

We choose the space C∗(a − α, a + α) of functions continuous on [a − α, a + α]
and bounded by b− k and b+ k, together with the uniform sup metric;

||f − g|| = max
x∈[a−α,a+α]

|f(x)− g(x)| ,

where 0 < α ≤ h′ will be chosen to ensure that the mapping is a contraction. This
is a closed subset of a known complete metric space, and is therefore complete.

Note that the condition |x− a| ≤ h′ ensures that

|F(φ)− b| =
∣∣∣∣∫ x

a

f(t, φ(t)) dt
∣∣∣∣

≤
∣∣∣∣∫ x

a

|f(t, φ(t))| dt
∣∣∣∣

≤ K|x− a| ≤ Kh′ ≤ k

so that F(C∗) ⊂ C∗.
Specifically, we choose α so that αM < 1, where M is the Lipschitz constant.

If φ and ψ are two elements in C∗, then

||F(φ)−F(ψ)|| = sup
∣∣∣∣∫ x

a

(f(t, φ(t))− f(t, ψ(t))) dt
∣∣∣∣∣∣∣∣∫ x

a

(f(t, φ(t))− f(t, ψ(t))) dt
∣∣∣∣ ≤ ∣∣∣∣∫ x

a

|f(t, φ(t))− f(t, ψ(t))| dt
∣∣∣∣

≤
∣∣∣∣∫ x

a

M |φ− ψ| dt
∣∣∣∣

≤
∣∣∣∣∫ x

a

M ||φ− ψ|| dt
∣∣∣∣

≤ Mα||φ− ψ||
||F(φ)−F(ψ)|| ≤ Mα||φ− ψ||

Hence F is a contraction mapping, and the result follows.
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e.g. Consider the differential equation

y′ = y2 + x ; y(0) = 0

in the square R = [−1, 1]× [−1, 1].
The function f(x, y) = y2 + x is obviously continuous in R, and

|f(x, y1)− f(x, y2)| = |y2
1 − y2

2 |
= |y1 − y2| |y1 + y2| ≤ 2|y1 − y2|

for (x, y1), (x, y2) ∈ R.
On R, the maximum of |y2 + x| is 2, so that we have to replace R by R′ =

[− 1
2 ,

1
2 ]× [−1, 1] to ensure that we map C∗ into C∗.

Finally, for Mα < 1 we need to choose α < 1
2 .

The contraction mapping theorem now guarantees a unique solution on [−α, α]
by iterating

y(x) =
∫ x

0

(y2(t) + t) dt .

We can approximate this solution by choosing φ0(x) = y(0) = 0, giving

φ1(x) =
1
2
x2

φ2(x) =
1
2
x2 +

1
20
x5

φ3(x) =
1
2
x2 +

1
20
x5 +

1
160

x8 +
1

4400
x11

The power series generated by this process in fact converges to the solution in a
larger interval than [−α, α].

The solution of the equation can be expressed in the form y = −u′/u, where

u(x) = 1− x3

2.3
+

x6

2.3.5.6
− x9

2.3.5.6.8.9
+ . . .

u has a zero for x ∼ 2, which generates a vertical asymptote for y.

This result can be extended to systems of differential equations, where y ∈ Rn,
and from there to nth order initial value problems.

Extensions.
While cosx is not a contraction mapping on R, the iterated function cos(cosx)

satisfies ∣∣∣∣ ddx (cos(cosx))
∣∣∣∣ = | sin(cosx) sin(x)| < sin 1 < 1

and is a contraction on R.
Similarly, exp(−x) is not a contraction on R, but exp(− exp(−x)) satisfies∣∣∣∣ ddx (exp(− exp(−x)))

∣∣∣∣ = | exp(−x− exp(−x))| ≤ e−1 < 1

and is a contraction on R.
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Consider then the situation in which f : A → A is not a contraction mapping
but fN , where the superscript represents the N th iteration of the function, is a
contraction.

For any x ∈ A, the sequence x, fN (x), f2N (x), . . . converges to the fixed point
of fN .

Now consider a sequence {fn(x0)} of iterates of f .
We can write this sequence as N subsequences

x0 xN = fN (x0) x2N = f2N (x0) . . .
x1 = f(x0) xN+1 = fN (x1) x2N+1 = f2N (x1) . . .

. . . . . .
xN−1 = fN−1(x0) x2N−1 = fN (xN−1) x3N−1 = f2N (xN−1) . . .

each of which converges to the fixed point of fN . Therefore the whole sequence
also converges to this fixed point.

Furthermore, if fN (a) = a, fN+1(a) = fN (f(a)) = f(a), and since the fixed
point is unique, f(a) = a.

Therefore, f has a unique fixed point in A, and the sequence converges to it.

For instance, with f(x) = e−x and x0 = 1, we obtain

x2 = 0.36788
x3 = 0.69220
x4 = 0.50047
x5 = 0.60624
x6 = 0.54540
x7 = 0.57961
x8 = 0.56012

. . .

a = 0.56714 . . .

As another example, consider the space C(0, π2 ) of continuous real functions on
[0, π2 ] together with the uniform sup metric.

F(f) =
∫ x

0

(f(t) + t) sin t dt

maps C into C.
However, if φ(x) = −x and ψ(x) = 1− x,

||φ− ψ|| = sup
0≤x≤π/2

|1| = 1

, while

F(φ) = 0

F(ψ) =
∫ x

0

sin t dt = 1− cosx

||F(φ)−F(ψ)|| = sup
0≤x≤π/2

|1− cosx| = 1

so that F is not a contraction mapping on C.
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On the other hand, in general

|F(φ)−F(ψ)| =
∣∣∣∣∫ x

0

(φ(t)− ψ(t)) sin t dt
∣∣∣∣

≤
∫ x

0

|φ(t)− ψ(t)| dt

≤x||φ− ψ||∣∣F2(φ)−F2(ψ)
∣∣ ≤ ∫ x

0

|F(φ)−F(ψ)| dt

≤
∫ x

0

x||φ− ψ|| dt

≤ 1
2
x2||φ− ψ||∣∣F3(φ)−F3(ψ)

∣∣ ≤ ∫ x

0

∣∣F2(φ)−F2(ψ)
∣∣ dt

≤
∫ x

0

1
2
x2||φ− ψ|| dt

≤ 1
6
x3||φ− ψ||

≤ 1
6

(π
2

)3

||φ− ψ||

< 0.65||φ− ψ||

so that F3 is a contraction on C, and there is a unique continuous solution of

y(x) =
∫ x

0

(y(t) + t) sin(t) dt

on [0, π2 ], namely

y(x) =
∫ x

0

t sin t exp(cos t− cosx) dt .

Differential equations revisited
The solution given above was found by solving the equivalent differential equation

y′ = (y + x) sinx ; y(0) = 0 .

When we derived the existence and uniqueness proof for differential equations
earlier, we had to restrict our iteration to an interval [a− α, a+ α] where αM < 1
in order to ensure that we had a contraction mapping.

The above example shows that we could achieve the same result by ensuring that
FN is a contraction mapping for some integer N .

This enables us to retain the interval [a− h′, a+ h′].
In the same fashion as above, we can show

|F(φ)−F(ψ)| ≤
∣∣∣∣∫ x

a

M ||φ− ψ|| dt
∣∣∣∣ ≤M |x− a|||φ− ψ||∣∣F2(φ)−F2(ψ)

∣∣ ≤ ∣∣∣∣∫ x

a

M ||F(φ)−F(ψ)|| dt
∣∣∣∣ ≤ 1

2!
M2|x− a|2||φ− ψ||

|Fn(φ)−Fn(ψ)| ≤
∣∣∣∣∫ x

a

M ||Fn−1(φ)−Fn−1(ψ)|| dt
∣∣∣∣ ≤ 1

n!
Mn|x− a|n||φ− ψ||
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so that
||Fn(φ)−Fn(ψ)|| ≤ 1

n!
(Mh′)n||φ− ψ||

Since the power series for ex converges for all x, there is some N such that
1
N !

(Mh′)N < 1

and so we eventually have a contraction mapping as required.

Contraction mapping on compact sets
On the tutorial sheet you have seen that the condition

d(f(x), f(y)) < d(x, y) ∀ x 6= y ∈ A
is sufficient for uniqueness, and that a continuous real function from [a, b] to [a, b]
has at least one fixed point.

We can combine and generalize slightly these results to give:
If (X, d) is a compact metric space, and f : X → X satisfies

d(f(x), f(y)) < d(x, y) ∀ x 6= y ∈ X ,

then f has a unique fixed point in X.
Furthermore, for any x0 ∈ X, the sequence {fn(x0)} converges to the fixed

point.

For every x ∈ X, consider the function F : X → R given by

F (x) = d(x, f(x)) .

The set F (X) ⊂ R is bounded below by 0, so it has a greatest lower bound, α,
say.

Suppose that there is no element a ∈ X such that F (a) = α.
Taking ε1 = 1, there is an element x1 ∈ X such that

α < F (x1) < α+ ε1 .

Now take ε2 = 1
2 (F (x1)− α) > 0. There is an element x2 ∈ X such that

α < F (x2) < α+ ε2 < α+
1
2
.

Continuing in this way we can construct an infinite collection of points xn ∈ X
such that

α < F (xn) < α+
1

2n−1
.

Since X is compact, this collection has a convergent subsequence whose limit a
is in X, and for which

α ≤ F (a) < α+ ε

for any ε > 0.
Therefore F (a) = α.
But now

F (f(a)) = d(f(a), f(f(a))) < d(a, f(a)) = F (a)

unless a = f(a).
Therefore a is a fixed point of f , and the property

d(f(x), f(y)) < d(x, y) ∀ x 6= y ∈ X
ensures that it is unique.
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Now consider an arbitrary x0 ∈ X.
The sequence {xn = fn(x0)} has the property that

d(xn+1, a) = d(f(xn), f(a)) < d(xn, a)

so that {d(xn, a)} is a monotonic decreasing sequence in R which is bounded below
by 0. Therefore it has a limit β ≥ 0.

Now the set {xn} is an infinite collection in X which has a convergent subse-
quence in X, which has a limit y in X, for which d(y, a) = β.

Suppose {xni} → y.
Since f is uniformly continuous on X, {f(xni)} → f(y). That is: the sequence

{xni+1} is another convergent subsequence of {xn}. Therefore d(f(y), a) = β also.
But

d(f(y), a) = d(f(y), f(a)) < d(y, a)

unless y = a, which implies that β = 0.
In turn this gives d(xn, a)→ 0 as n→∞, and {xn} converges to a as required.

The implicit function theorem
Let F : R = R× [a, b]→ R be continuous on R, and differentiable with respect

to its first argument.
If there are numbers m and M such that

0 < m ≤ ∂F (x, t)
∂x

≤M ∀ (x, t) ∈ R

then there is a unique continuous function x : [a, b] → R such that F (x(t), t) = 0
for all t ∈ [a, b].

As Usual, we choose for our complete metric space the set C(a, b) of functions
continuous on [a, b] together with the uniform metric.

We construct a contraction mapping for this problem in a fashion analogous to
the earlier numerical examples:

F(φ(t)) = φ(t)− 1
M
F (φ(t), t) .

This obviously maps C into C.
For φ(t), ψ(t) ∈ C, then for each t′ ∈ [a, b], the Mean Value Theorem applied to

the first variable in F gives

F (φ(t′), t′)− F (ψ(t′), t′) = Fx(c, t′)(φ(t′)− ψ(t′))

for some c between φ(t′) and ψ(t′).
Therefore

F(φ(t′))−F(ψ(t′))

= φ(t′)− 1
M
F (φ(t′), t′)− ψ(t′) +

1
M
F (ψ(t′), t′)

= (φ(t′)− ψ(t′))
(

1− 1
M
Fx(c, t′)

)
|F(φ(t′))−F(ψ(t′))| ≤

(
1− m

M

)
|φ(t′)− ψ(t′)| ≤ k||φ− ψ||

||F(φ)−F(ψ)|| ≤ k||φ− ψ||
where k = (M −m)/M < 1.

Hence F is a contraction mapping on C, and the result follows.


