CONTRACTION MAPPINGS
APPLICATIONS AND EXTENSIONS

The contraction mapping theorem can also be used as a theoretical tool.

In particular, it can be used to prove the existence and uniqueness of the solution
of the initial value problem

y = flz,y); yla)=b
under certain conditions on the function f.

Suppose that f : R? — R is continuous on the rectangle
R=la—h,a+h] x[b—Fkb+ kK

and on this rectangle satisfies the additional (Lipschitz) condition that there is a
constant M such that

|f($,y1) - f(m7y2)| < M|y1 _y2|

for all (x,y1), (z,y2) € R.
(In particular, this condition will be satisfied if 0f/Jy exists and is bounded in
Then there is an a > 0 such that the initial value problem has a unique solution
fora—a<z<ata.

We begin by modifying R if necessary to ensure that any solution remains
bounded by b — k£ and b + k.

Since R is closed and bounded in R?, it is compact.
Since f is continuous on R, its range is compact in R.
In particular, it is bounded; there exists a constant K such that

flz,y)| < KVa,yeR.
Therefore, any solution in R is bounded by the lines
y—b=x+K(zr—a).

If kK > Kh, this region is bounded by b — k and b + k for x € [a — h,a + h).
Otherwise, set h' = k/K, and reduce the region R appropriately;

R =la—h,a+n]x[b—Fkb+k|.
Since R’ C R, the conditions on f are unaffected by this change.

Next we replace the differential equation by an integral equation:

If y(z) is a solution of the differential equation, then y is differentiable.

Therefore y is continuous, and f(x,y(x)) is a continuous function of z. Hence it
is integrable, and

/ "yt dt = / " F(t () dt
) =v+ | " Ft () dt
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Conversely, if y(x) is a solution of this integral equation, then y(x) is continuous
since the right-hand side of the equation is continuous.

Therefore the integrand f (¢, y(t)) is continuous, and by the fundamental theorem
of the calculus

| sty
is differentiable, and
d X
& [ o) = gt
xz a
Hence y is a solution of the initial value problem also.

We now need to show that the mapping

F@) =+ [ feom)a

derived from the integral equation is a contraction mapping on an appropriate
complete metric space. If it is, then the fixed point y of the mapping is the unique
solution of the integral equation.

We choose the space C*(a — a,a + «) of functions continuous on [a — o, a +
and bounded by b — k and b + k, together with the uniform sup metric;

1f =gll= _ max [f(z)=g(z)],
z€la—a,a+a]

where 0 < o < A/ will be chosen to ensure that the mapping is a contraction. This
is a closed subset of a known complete metric space, and is therefore complete.
Note that the condition |x — a| < A’ ensures that

[ swo dt]

/ rf<t,¢<t>>rdt\
< Kl|lr—a| <Kh <k

[ F(6) — bl =

IA

so that F(C*) C C*.
Specifically, we choose « so that aM < 1, where M is the Lipschitz constant.

If ¢ and ¥ are two elements in C*, then

17 (¢) = F ()|l = sup

[ trteoten - sieucea

[ G0 - ste.vie) dt] < | [ 156000 - st p(o) dt\

< /:M|¢—w|dt’

<|f M\|¢—wr|dt]
< Mallé - ¥
17(8) = Fw)l| < Mallé |

Hence F is a contraction mapping, and the result follows.



e.g. Consider the differential equation
v =y +x;y0)=0

in the square R = [—1,1] x [-1,1].
The function f(z,y) = y? + z is obviously continuous in R, and

’f($7y1) - f(xay2) = ‘y% - y%‘

= |y1 — w2l ly1 + y2| < 2|y1 — 2

for (z,11), (z,y2) € R.

On R, the maximum of |y? + x| is 2, so that we have to replace R by R’ =
[—3%, 3] x [~1,1] to ensure that we map C* into C*.

Finally, for Ma < 1 we need to choose a < %

The contraction mapping theorem now guarantees a unique solution on [—a, &/

by iterating
y(z) = / (W2 (t) + 1) dt .

We can approximate this solution by choosing ¢¢(x) = y(0) = 0, giving

1
o1(x) = 51'2
1 1
qbg(l’) = 51'2 + %IL‘5
1 1 5 1 1 11

_ .2 = = .8
93(7) = 527+ 557" + 1657+ og”

The power series generated by this process in fact converges to the solution in a
larger interval than [—a, «].

The solution of the equation can be expressed in the form y = —u’/u, where
3 28 z?
=1-— — e
u@) 23 2356 235689

u has a zero for x ~ 2, which generates a vertical asymptote for y.

This result can be extended to systems of differential equations, where y € R"™,
and from there to n* order initial value problems.

Extensions.
While cos z is not a contraction mapping on R, the iterated function cos(cos x)
satisfies

‘d—(cos(cos x))‘ = |sin(cos x) sin(z)| < sinl < 1
T

and is a contraction on R.
Similarly, exp(—x) is not a contraction on R, but exp(— exp(—z)) satisfies

‘%(exp(—exp(—x}))‘ = |exp(—x — exp(—z))| < e l<i

and is a contraction on R.



Consider then the situation in which f : A — A is not a contraction mapping
but fV, where the superscript represents the N iteration of the function, is a
contraction.

For any = € A, the sequence x, fV(z), f2V(x),... converges to the fixed point
of fN.

Now consider a sequence {f™(xg)} of iterates of f.

We can write this sequence as N subsequences

Zo N = fN(iUo) ToN = f2N(iUo)
x1 = f(xo) eny1 = fN(x1) zon 1 = f2N (21)
ITN-1= fol(xo) TaN-1 = .fN(xN—l) I3N-1 = ];2N($N—1)

each of which converges to the fixed point of f~. Therefore the whole sequence
also converges to this fixed point.

Furthermore, if f¥(a) = a, fN*1(a) = fN(f(a)) = f(a), and since the fixed
point is unique, f(a) = a.

Therefore, f has a unique fixed point in A, and the sequence converges to it.

For instance, with f(x) = e™* and zy = 1, we obtain

x2 = 0.36788
x3 = 0.69220
x4 = 0.50047
x5 = 0.60624
xe = 0.54540
x7 = 0.57961
xg = 0.56012
a=0.56714...

As another example, consider the space C'(0, Z) of continuous real functions on

2
[0, 5] together with the uniform sup metric.

fUUziéaf@)+wsmtﬁ

maps C into C.
However, if ¢(x) = —z and ¢¥(z) =1 — =z,

o —o||= sup [|1|=1
0<z<n/2
, while
F(o) =0
]:(1#):/ sintdt =1 — cosz
0
|F(¢) = F()[| = sup [1—cosz|=1

0<z<w/2

so that F is not a contraction mapping on C.



On the other hand, in general

(o) = F()| =

Aﬂww—wu»mwﬁ

< [ 1ot~ vo
<allé - vl

72(0) - )| < [ 1) - Folar
< [ allo- vl
< 2all6

\ﬂw%f%mséﬂﬂ@_ﬁwﬂﬁ

1

< —22||¢p — || dt
< [ 5l

13
§6$||¢—1/)H

1 3
<2 (3) lle—vl
< 0.65]| — |

so that F3 is a contraction on C, and there is a unique continuous solution of

y@wzlﬂmw+wﬁmwﬁ
on [0, 5], namely

x
y(z) :/ tsintexp(cost — cosx)dt .
0

Differential equations revisited
The solution given above was found by solving the equivalent differential equation

y'=(y+az)sinz; y(0)=0.

When we derived the existence and uniqueness proof for differential equations
earlier, we had to restrict our iteration to an interval [a — «, a + a] where aM < 1
in order to ensure that we had a contraction mapping.

The above example shows that we could achieve the same result by ensuring that
FN is a contraction mapping for some integer N.

This enables us to retain the interval [a — h',a + R/].

In the same fashion as above, we can show

[F(0) = F(¥)] <

[ arlo— vl ar] < arje — allio - ol

|F2(¢) = F2(¥)| <

[ w150 - Flae] < gt - o - vl

[F*(0) = F* ()] <

v 1
[ a1 - F @l < e = aplie - vl
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so that ]
[F™(¢) = FH (@)l < —(MA)"[|¢ = 4]
Since the power series for e” converges for all x, there is some N such that
1
M YN <1
and so we eventually have a contraction mapping as required.

Contraction mapping on compact sets
On the tutorial sheet you have seen that the condition

d(f(x), f(y)) <d(z,y) Vo #ye A

is sufficient for uniqueness, and that a continuous real function from [a, b] to [a, b]
has at least one fixed point.

We can combine and generalize slightly these results to give:

If (X,d) is a compact metric space, and f: X — X satisfies

d(f(z), f(y) <d(z,y) Vz#ye X,

then f has a unique fixed point in X.

Furthermore, for any zo € X, the sequence {f™(z¢)} converges to the fixed
point.

For every x € X, consider the function F': X — R given by

F(z) = d(z, f(x)) -
The set F'(X) C R is bounded below by 0, so it has a greatest lower bound, «,
say.
Suppose that there is no element a € X such that F'(a) = a.
Taking €; = 1, there is an element x; € X such that
a< F(r) <a+e .
Now take €3 = 2 (F(z1) — @) > 0. There is an element z5 € X such that

1
a<F(a:2)<a—|—62<a+§.

Continuing in this way we can construct an infinite collection of points x,, € X
such that

1
Oz<F(£L’n)<Oé+F.

Since X is compact, this collection has a convergent subsequence whose limit a
is in X, and for which
a<Fla)<a-+e

for any € > 0.
Therefore F(a) = a.
But now

F(f(a)) = d(f(a), f(f(a))) < d(a, f(a)) = F(a)
unless a = f(a).
Therefore a is a fixed point of f, and the property

d(f(x), f(y)) <d(z,y) Ve FyeX

ensures that it is unique.



Now consider an arbitrary xp € X.
The sequence {x,, = f"(xo)} has the property that

d(anrla CL) = d(f(xn)7 f(a)) < d(In, a)
so that {d(z,,a)} is a monotonic decreasing sequence in R which is bounded below
by 0. Therefore it has a limit 3 > 0.

Now the set {z,} is an infinite collection in X which has a convergent subse-
quence in X, which has a limit y in X, for which d(y,a) = f.

Suppose {x,,} — y.

Since f is uniformly continuous on X, {f(zn,)} — f(y). That is: the sequence
{Zn,+1} is another convergent subsequence of {x,,}. Therefore d(f(y),a) = /3 also.

But

d(f(y),a) =d(f(y), f(a)) < d(y,a)

unless y = a, which implies that § = 0.
In turn this gives d(z,,a) — 0 as n — oo, and {z,,} converges to a as required.

The implicit function theorem

Let F': R =R X [a,b] — R be continuous on R, and differentiable with respect
to its first argument.

If there are numbers m and M such that
F(x,t)

x
then there is a unique continuous function x : [a,b] — R such that F(z(t),t) = 0
for all ¢ € [a, b].

As Usual, we choose for our complete metric space the set C(a,b) of functions
continuous on [a, b| together with the uniform metric.

0<m<

<MV (z,t) €R

We construct a contraction mapping for this problem in a fashion analogous to
the earlier numerical examples:

1

F(6(t)) = o(t) — 77 F(0(1),1) -

This obviously maps C' into C.
For ¢(t),v(t) € C, then for each t' € [a,b], the Mean Value Theorem applied to
the first variable in F' gives

F(o(t'),t') = F(¥(t'),t') = Fu(c,t')(o(t') — 9 (t'))
for some ¢ between ¢(t') and ¢ (t').
Therefore

i
—(0(t) - w(0) (1- 7Pl
() - Fen] < (1= T2) [6(¢) - w(e)] < Ko — ]

1F(9) = F()I < kllo — o]

where k = (M —m)/M < 1.
Hence F is a contraction mapping on C, and the result follows.



