Contraction mappings
 Applications and extensions

The contraction mapping theorem can also be used as a theoretical tool.
In particular, it can be used to prove the existence and uniqueness of the solution of the initial value problem

$$
y^{\prime}=f(x, y) ; y(a)=b
$$

under certain conditions on the function f.
Suppose that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous on the rectangle

$$
\mathcal{R}=[a-h, a+h] \times[b-k, b+k]
$$

and on this rectangle satisfies the additional (Lipschitz) condition that there is a constant M such that

$$
\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right| \leq M\left|y_{1}-y_{2}\right|
$$

for all $\left(x, y_{1}\right),\left(x, y_{2}\right) \in \mathcal{R}$.
(In particular, this condition will be satisfied if $\partial f / \partial y$ exists and is bounded in R.)

Then there is an $\alpha>0$ such that the initial value problem has a unique solution for $a-\alpha \leq x \leq a+\alpha$.

We begin by modifying \mathcal{R} if necessary to ensure that any solution remains bounded by $b-k$ and $b+k$.

Since \mathcal{R} is closed and bounded in \mathbb{R}^{2}, it is compact.
Since f is continuous on \mathcal{R}, its range is compact in \mathbb{R}.
In particular, it is bounded; there exists a constant K such that

$$
|f(x, y)| \leq K \forall x, y \in \mathcal{R}
$$

Therefore, any solution in \mathcal{R} is bounded by the lines

$$
y-b= \pm K(x-a)
$$

If $k \geq K h$, this region is bounded by $b-k$ and $b+k$ for $x \in[a-h, a+h]$.
Otherwise, set $h^{\prime}=k / K$, and reduce the region \mathcal{R} appropriately;

$$
\mathcal{R}^{\prime}=\left[a-h^{\prime}, a+h^{\prime}\right] \times[b-k, b+k] .
$$

Since $\mathcal{R}^{\prime} \subset \mathcal{R}$, the conditions on f are unaffected by this change.
Next we replace the differential equation by an integral equation:
If $y(x)$ is a solution of the differential equation, then y is differentiable.
Therefore y is continuous, and $f(x, y(x))$ is a continuous function of x. Hence it is integrable, and

$$
\begin{gathered}
\int_{a}^{x} y^{\prime}(t) d t=\int_{a}^{x} f(t, y(t)) d t \\
y(x)=b+\int_{a}^{x} f(t, y(t)) d t
\end{gathered}
$$

Conversely, if $y(x)$ is a solution of this integral equation, then $y(x)$ is continuous since the right-hand side of the equation is continuous.

Therefore the integrand $f(t, y(t))$ is continuous, and by the fundamental theorem of the calculus

$$
\int_{a}^{x} f(t, y(t)) d t
$$

is differentiable, and

$$
\frac{d}{d x} \int_{a}^{x} f(t, y(t)) d t=f(x, y(x))
$$

Hence y is a solution of the initial value problem also.
We now need to show that the mapping

$$
\mathcal{F}(\phi)=b+\int_{a}^{x} f(t, \phi(t)) d t
$$

derived from the integral equation is a contraction mapping on an appropriate complete metric space. If it is, then the fixed point y of the mapping is the unique solution of the integral equation.

We choose the space $C^{*}(a-\alpha, a+\alpha)$ of functions continuous on $[a-\alpha, a+\alpha]$ and bounded by $b-k$ and $b+k$, together with the uniform sup metric;

$$
\|f-g\|=\max _{x \in[a-\alpha, a+\alpha]}|f(x)-g(x)|,
$$

where $0<\alpha \leq h^{\prime}$ will be chosen to ensure that the mapping is a contraction. This is a closed subset of a known complete metric space, and is therefore complete.

Note that the condition $|x-a| \leq h^{\prime}$ ensures that

$$
\begin{aligned}
|\mathcal{F}(\phi)-b| & =\left|\int_{a}^{x} f(t, \phi(t)) d t\right| \\
& \leq\left|\int_{a}^{x}\right| f(t, \phi(t))|d t| \\
& \leq K|x-a| \leq K h^{\prime} \leq k
\end{aligned}
$$

so that $\mathcal{F}\left(C^{*}\right) \subset C^{*}$.
Specifically, we choose α so that $\alpha M<1$, where M is the Lipschitz constant.
If ϕ and ψ are two elements in C^{*}, then

$$
\begin{aligned}
\|\mathcal{F}(\phi)-\mathcal{F}(\psi)\| & =\sup \left|\int_{a}^{x}(f(t, \phi(t))-f(t, \psi(t))) d t\right| \\
\left|\int_{a}^{x}(f(t, \phi(t))-f(t, \psi(t))) d t\right| & \leq\left|\int_{a}^{x}\right| f(t, \phi(t))-f(t, \psi(t))|d t| \\
& \leq\left|\int_{a}^{x} M\right| \phi-\psi|d t| \\
& \leq\left|\int_{a}^{x} M\right||\phi-\psi||d t| \\
& \leq M \alpha\|\phi-\psi\| \\
\|\mathcal{F}(\phi)-\mathcal{F}(\psi)\| & \leq M \alpha\|\phi-\psi\|
\end{aligned}
$$

Hence \mathcal{F} is a contraction mapping, and the result follows.
e.g. Consider the differential equation

$$
y^{\prime}=y^{2}+x ; y(0)=0
$$

in the square $\mathcal{R}=[-1,1] \times[-1,1]$.
The function $f(x, y)=y^{2}+x$ is obviously continuous in \mathcal{R}, and

$$
\begin{aligned}
\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right| & =\left|y_{1}^{2}-y_{2}^{2}\right| \\
& =\left|y_{1}-y_{2}\right|\left|y_{1}+y_{2}\right| \leq 2\left|y_{1}-y_{2}\right|
\end{aligned}
$$

for $\left(x, y_{1}\right),\left(x, y_{2}\right) \in \mathcal{R}$.
On \mathcal{R}, the maximum of $\left|y^{2}+x\right|$ is 2 , so that we have to replace \mathcal{R} by $\mathcal{R}^{\prime}=$ $\left[-\frac{1}{2}, \frac{1}{2}\right] \times[-1,1]$ to ensure that we map C^{*} into C^{*}.

Finally, for $M \alpha<1$ we need to choose $\alpha<\frac{1}{2}$.
The contraction mapping theorem now guarantees a unique solution on $[-\alpha, \alpha]$ by iterating

$$
y(x)=\int_{0}^{x}\left(y^{2}(t)+t\right) d t
$$

We can approximate this solution by choosing $\phi_{0}(x)=y(0)=0$, giving

$$
\begin{gathered}
\phi_{1}(x)=\frac{1}{2} x^{2} \\
\phi_{2}(x)=\frac{1}{2} x^{2}+\frac{1}{20} x^{5} \\
\phi_{3}(x)=\frac{1}{2} x^{2}+\frac{1}{20} x^{5}+\frac{1}{160} x^{8}+\frac{1}{4400} x^{11}
\end{gathered}
$$

The power series generated by this process in fact converges to the solution in a larger interval than $[-\alpha, \alpha]$.

The solution of the equation can be expressed in the form $y=-u^{\prime} / u$, where

$$
u(x)=1-\frac{x^{3}}{2.3}+\frac{x^{6}}{2.3 .5 .6}-\frac{x^{9}}{2.3 .5 .6 .8 .9}+\ldots
$$

u has a zero for $x \sim 2$, which generates a vertical asymptote for y.
This result can be extended to systems of differential equations, where $y \in \mathbb{R}^{n}$, and from there to $n^{\text {th }}$ order initial value problems.

Extensions.

While $\cos x$ is not a contraction mapping on \mathbb{R}, the iterated function $\cos (\cos x)$ satisfies

$$
\left|\frac{d}{d x}(\cos (\cos x))\right|=|\sin (\cos x) \sin (x)|<\sin 1<1
$$

and is a contraction on \mathbb{R}.
Similarly, $\exp (-x)$ is not a contraction on \mathbb{R}, but $\exp (-\exp (-x))$ satisfies

$$
\left|\frac{d}{d x}(\exp (-\exp (-x)))\right|=|\exp (-x-\exp (-x))| \leq e^{-1}<1
$$

and is a contraction on \mathbb{R}.

Consider then the situation in which $f: A \rightarrow A$ is not a contraction mapping but f^{N}, where the superscript represents the $N^{t h}$ iteration of the function, is a contraction.

For any $x \in A$, the sequence $x, f^{N}(x), f^{2 N}(x), \ldots$ converges to the fixed point of f^{N}.

Now consider a sequence $\left\{f^{n}\left(x_{0}\right)\right\}$ of iterates of f.
We can write this sequence as N subsequences

$$
\begin{array}{cccc}
x_{0} & x_{N}=f^{N}\left(x_{0}\right) & x_{2 N}=f^{2 N}\left(x_{0}\right) & \ldots \\
x_{1}=f\left(x_{0}\right) & x_{N+1}=f^{N}\left(x_{1}\right) & x_{2 N+1}=f^{2 N}\left(x_{1}\right) & \ldots \\
x_{N-1}=f^{N-1}\left(x_{0}\right) & x_{2 N-1}=f^{N}\left(x_{N-1}\right) & x_{3 N-1}=f^{2 N}\left(x_{N-1}\right) & \ldots
\end{array}
$$

each of which converges to the fixed point of f^{N}. Therefore the whole sequence also converges to this fixed point.

Furthermore, if $f^{N}(a)=a, f^{N+1}(a)=f^{N}(f(a))=f(a)$, and since the fixed point is unique, $f(a)=a$.

Therefore, f has a unique fixed point in A, and the sequence converges to it.
For instance, with $f(x)=e^{-x}$ and $x_{0}=1$, we obtain

$$
\begin{gathered}
x_{2}=0.36788 \\
x_{3}=0.69220 \\
x_{4}=0.50047 \\
x_{5}=0.60624 \\
x_{6}=0.54540 \\
x_{7}=0.57961 \\
x_{8}=0.56012 \\
\ldots \\
a=0.56714 \ldots
\end{gathered}
$$

As another example, consider the space $C\left(0, \frac{\pi}{2}\right)$ of continuous real functions on $\left[0, \frac{\pi}{2}\right]$ together with the uniform sup metric.

$$
\mathcal{F}(f)=\int_{0}^{x}(f(t)+t) \sin t d t
$$

maps C into C.
However, if $\phi(x)=-x$ and $\psi(x)=1-x$,

$$
\|\phi-\psi\|=\sup _{0 \leq x \leq \pi / 2}|1|=1
$$

, while

$$
\begin{gathered}
\mathcal{F}(\phi)=0 \\
\mathcal{F}(\psi)=\int_{0}^{x} \sin t d t=1-\cos x \\
\|\mathcal{F}(\phi)-\mathcal{F}(\psi)\|=\sup _{0 \leq x \leq \pi / 2}|1-\cos x|=1
\end{gathered}
$$

so that \mathcal{F} is not a contraction mapping on C.

On the other hand, in general

$$
\begin{aligned}
|\mathcal{F}(\phi)-\mathcal{F}(\psi)| & =\left|\int_{0}^{x}(\phi(t)-\psi(t)) \sin t d t\right| \\
& \leq \int_{0}^{x}|\phi(t)-\psi(t)| d t \\
& \leq x| | \phi-\psi \| \\
\left|\mathcal{F}^{2}(\phi)-\mathcal{F}^{2}(\psi)\right| & \leq \int_{0}^{x}|\mathcal{F}(\phi)-\mathcal{F}(\psi)| d t \\
& \leq \int_{0}^{x} x\|\phi-\psi\| d t \\
& \leq \frac{1}{2} x^{2}\|\phi-\psi\| \\
\left|\mathcal{F}^{3}(\phi)-\mathcal{F}^{3}(\psi)\right| & \leq \int_{0}^{x}\left|\mathcal{F}^{2}(\phi)-\mathcal{F}^{2}(\psi)\right| d t \\
& \leq \int_{0}^{x} \frac{1}{2} x^{2}\|\phi-\psi\| d t \\
& \leq \frac{1}{6} x^{3}\|\phi-\psi\| \\
& \leq \frac{1}{6}\left(\frac{\pi}{2}\right)^{3}\|\phi-\psi\| \\
& <0.65\|\phi-\psi\|
\end{aligned}
$$

so that \mathcal{F}^{3} is a contraction on C, and there is a unique continuous solution of

$$
y(x)=\int_{0}^{x}(y(t)+t) \sin (t) d t
$$

on $\left[0, \frac{\pi}{2}\right]$, namely

$$
y(x)=\int_{0}^{x} t \sin t \exp (\cos t-\cos x) d t
$$

Differential equations revisited

The solution given above was found by solving the equivalent differential equation

$$
y^{\prime}=(y+x) \sin x ; y(0)=0
$$

When we derived the existence and uniqueness proof for differential equations earlier, we had to restrict our iteration to an interval $[a-\alpha, a+\alpha]$ where $\alpha M<1$ in order to ensure that we had a contraction mapping.

The above example shows that we could achieve the same result by ensuring that \mathcal{F}^{N} is a contraction mapping for some integer N.

This enables us to retain the interval $\left[a-h^{\prime}, a+h^{\prime}\right]$.
In the same fashion as above, we can show

$$
\begin{gathered}
|\mathcal{F}(\phi)-\mathcal{F}(\psi)| \leq\left|\int_{a}^{x} M\|\phi-\psi\| d t\right| \leq M|x-a|\|\phi-\psi\| \\
\left|\mathcal{F}^{2}(\phi)-\mathcal{F}^{2}(\psi)\right| \leq\left|\int_{a}^{x} M\right|\left|\mathcal{F}(\phi)-\mathcal{F}(\psi)\left\|d t\left|\leq \frac{1}{2!} M^{2}\right| x-\left.a\right|^{2}\right\| \phi-\psi \|\right. \\
\left|\mathcal{F}^{n}(\phi)-\mathcal{F}^{n}(\psi)\right| \leq\left|\int_{a}^{x} M\right|\left|\mathcal{F}^{n-1}(\phi)-\mathcal{F}^{n-1}(\psi)\left\|d t\left|\leq \frac{1}{n!} M^{n}\right| x-\left.a\right|^{n}\right\| \phi-\psi \|\right.
\end{gathered}
$$

so that

$$
\left\|\mathcal{F}^{n}(\phi)-\mathcal{F}^{n}(\psi)\right\| \leq \frac{1}{n!}\left(M h^{\prime}\right)^{n}\|\phi-\psi\|
$$

Since the power series for e^{x} converges for all x, there is some N such that

$$
\frac{1}{N!}\left(M h^{\prime}\right)^{N}<1
$$

and so we eventually have a contraction mapping as required.

Contraction mapping on compact sets

On the tutorial sheet you have seen that the condition

$$
d(f(x), f(y))<d(x, y) \forall x \neq y \in A
$$

is sufficient for uniqueness, and that a continuous real function from $[a, b]$ to $[a, b]$ has at least one fixed point.

We can combine and generalize slightly these results to give:
If (X, d) is a compact metric space, and $f: X \rightarrow X$ satisfies

$$
d(f(x), f(y))<d(x, y) \forall x \neq y \in X
$$

then f has a unique fixed point in X.
Furthermore, for any $x_{0} \in X$, the sequence $\left\{f^{n}\left(x_{0}\right)\right\}$ converges to the fixed point.

For every $x \in X$, consider the function $F: X \rightarrow \mathbb{R}$ given by

$$
F(x)=d(x, f(x))
$$

The set $F(X) \subset \mathbb{R}$ is bounded below by 0 , so it has a greatest lower bound, α, say.

Suppose that there is no element $a \in X$ such that $F(a)=\alpha$.
Taking $\epsilon_{1}=1$, there is an element $x_{1} \in X$ such that

$$
\alpha<F\left(x_{1}\right)<\alpha+\epsilon_{1} .
$$

Now take $\epsilon_{2}=\frac{1}{2}\left(F\left(x_{1}\right)-\alpha\right)>0$. There is an element $x_{2} \in X$ such that

$$
\alpha<F\left(x_{2}\right)<\alpha+\epsilon_{2}<\alpha+\frac{1}{2} .
$$

Continuing in this way we can construct an infinite collection of points $x_{n} \in X$ such that

$$
\alpha<F\left(x_{n}\right)<\alpha+\frac{1}{2^{n-1}} .
$$

Since X is compact, this collection has a convergent subsequence whose limit a is in X, and for which

$$
\alpha \leq F(a)<\alpha+\epsilon
$$

for any $\epsilon>0$.
Therefore $F(a)=\alpha$.
But now

$$
F(f(a))=d(f(a), f(f(a)))<d(a, f(a))=F(a)
$$

unless $a=f(a)$.
Therefore a is a fixed point of f, and the property

$$
d(f(x), f(y))<d(x, y) \forall x \neq y \in X
$$

ensures that it is unique.

Now consider an arbitrary $x_{0} \in X$.
The sequence $\left\{x_{n}=f^{n}\left(x_{0}\right)\right\}$ has the property that

$$
d\left(x_{n+1}, a\right)=d\left(f\left(x_{n}\right), f(a)\right)<d\left(x_{n}, a\right)
$$

so that $\left\{d\left(x_{n}, a\right)\right\}$ is a monotonic decreasing sequence in \mathbb{R} which is bounded below by 0 . Therefore it has a limit $\beta \geq 0$.

Now the set $\left\{x_{n}\right\}$ is an infinite collection in X which has a convergent subsequence in X, which has a limit y in X, for which $d(y, a)=\beta$.

Suppose $\left\{x_{n_{i}}\right\} \rightarrow y$.
Since f is uniformly continuous on $X,\left\{f\left(x_{n_{i}}\right)\right\} \rightarrow f(y)$. That is: the sequence $\left\{x_{n_{i}+1}\right\}$ is another convergent subsequence of $\left\{x_{n}\right\}$. Therefore $d(f(y), a)=\beta$ also.

But

$$
d(f(y), a)=d(f(y), f(a))<d(y, a)
$$

unless $y=a$, which implies that $\beta=0$.
In turn this gives $d\left(x_{n}, a\right) \rightarrow 0$ as $n \rightarrow \infty$, and $\left\{x_{n}\right\}$ converges to a as required.

The implicit function theorem

Let $F: \mathcal{R}=\mathbb{R} \times[a, b] \rightarrow \mathbb{R}$ be continuous on \mathcal{R}, and differentiable with respect to its first argument.

If there are numbers m and M such that

$$
0<m \leq \frac{\partial F(x, t)}{\partial x} \leq M \forall(x, t) \in \mathcal{R}
$$

then there is a unique continuous function $x:[a, b] \rightarrow \mathbb{R}$ such that $F(x(t), t)=0$ for all $t \in[a, b]$.

As Usual, we choose for our complete metric space the set $C(a, b)$ of functions continuous on $[a, b]$ together with the uniform metric.

We construct a contraction mapping for this problem in a fashion analogous to the earlier numerical examples:

$$
\mathcal{F}(\phi(t))=\phi(t)-\frac{1}{M} F(\phi(t), t)
$$

This obviously maps C into C.
For $\phi(t), \psi(t) \in C$, then for each $t^{\prime} \in[a, b]$, the Mean Value Theorem applied to the first variable in F gives

$$
F\left(\phi\left(t^{\prime}\right), t^{\prime}\right)-F\left(\psi\left(t^{\prime}\right), t^{\prime}\right)=F_{x}\left(c, t^{\prime}\right)\left(\phi\left(t^{\prime}\right)-\psi\left(t^{\prime}\right)\right)
$$

for some c between $\phi\left(t^{\prime}\right)$ and $\psi\left(t^{\prime}\right)$.
Therefore

$$
\begin{gathered}
\mathcal{F}\left(\phi\left(t^{\prime}\right)\right)-\mathcal{F}\left(\psi\left(t^{\prime}\right)\right) \\
=\phi\left(t^{\prime}\right)-\frac{1}{M} F\left(\phi\left(t^{\prime}\right), t^{\prime}\right)-\psi\left(t^{\prime}\right)+\frac{1}{M} F\left(\psi\left(t^{\prime}\right), t^{\prime}\right) \\
=\left(\phi\left(t^{\prime}\right)-\psi\left(t^{\prime}\right)\right)\left(1-\frac{1}{M} F_{x}\left(c, t^{\prime}\right)\right) \\
\left|\mathcal{F}\left(\phi\left(t^{\prime}\right)\right)-\mathcal{F}\left(\psi\left(t^{\prime}\right)\right)\right| \leq\left(1-\frac{m}{M}\right)\left|\phi\left(t^{\prime}\right)-\psi\left(t^{\prime}\right)\right| \leq k\|\phi-\psi\| \\
\|\mathcal{F}(\phi)-\mathcal{F}(\psi)\| \leq k\|\phi-\psi\|
\end{gathered}
$$

where $k=(M-m) / M<1$.
Hence \mathcal{F} is a contraction mapping on C, and the result follows.

