SCHOOL OF MATHEMATICS AND PHYSICS
 MATH3401
 Tutorial Worksheet

Semester 1, 2024, Week 9
(1) Are the following functions conformal? To answer this, analyse their domains and draw some sketches to map specific regions.
(a) $f(z)=e^{z}$
(b) $f(z)=z^{2}$
(c) $f(z)=z+\frac{1}{z}$
(2) Show that $u(x, y)$ is harmonic in some domain and find a harmonic conjugate when
(a) $u(x, y)=2 x(1-y)$
(b) $u(x, y)=2 x-x^{3}+3 x y^{2}$
(c) $u(x, y)=\sinh x \sin y$
(c) $u(x, y)=\frac{x}{x^{2}+y^{2}}$
(3) Let $f(z)$ be an analytic function on a domain Ω that does not include the origin. Using polar coordinates in Ω, f has the form

$$
f(z)=u(r, \theta)+i v(r, \theta) .
$$

(a) Using the chain rule, show that all partial derivatives of u and v of first and second order with respect to r and/or θ are continuous (indeed, all partial derivatives of any order are).
(b) Using the Cauchy-Riemann equations in polar coordinates, show that u satisfies

$$
r^{2} u_{r r}+r u_{r}+u_{\theta \theta}=0 .
$$

This is the polar form of Laplace's equation, after having multiplied through by r^{2} : the Laplacian Δ is given in spherical coordinates by $\frac{1}{r^{2}}\left(r^{2} \frac{\partial^{2}}{\partial r^{2}}+r \frac{\partial}{\partial r}+\frac{\partial^{2}}{\partial \theta^{2}}\right)$.
(c) Show that v satisfies

$$
r^{2} v_{r r}+r v_{r}+v_{\theta \theta}=0
$$

(d) Give a procedure which finds the harmonic conjugate of a given harmonic function u given in polar coordinates (don't transform to cartesian coordinates: the harmonic conjugate v should be expressed as $v(r, \theta)$).
(e) Verify directly that the function $u(r, \theta)=\ln \left(r^{2}\right)$ is harmonic on the domain $\{z \mid r>$ $0,0<\arg z<2 \pi\}$, and use your procedure from part (d) to calculate a harmonic conjugate.

