SCHOOL OF MATHEMATICS AND PHYSICS

MATH3401
Tutorial Worksheet
Semester 1, 2024, Week 9
(1) Are the following functions conformal? To answer this, analyse their domains and draw some sketches to map specific regions.
(a) $f(z)=e^{z}$
(b) $f(z)=z^{2}$
(c) $f(z)=z+\frac{1}{z}$

Solution. (a) The function $f(z)=e^{z}$ is conformal throughout the entire z plane since the function is entire and $\left(e^{z}\right)^{\prime}=e^{z} \neq 0$ for each z. For details about this mapping see Section 14 from Churchill's book.
(b) We know that the function $f(z)=z^{2}$ maps a quarter plane to a half plane, and therefore doubles the angle between the coordinate axes at the origin (see Figures 1 and 2).

Figure 1: A quarter plane.

Figure 2: Image under the map $f(z)=z^{2}$.

The function $f(z)=z^{2}$ is conformal on \mathbb{C} except at the origin, since f is entire, and 0 is the only critical point of f.

Note that, due to conformality, the map preserves angles everywhere else.
Although $f(z)=z^{2}$ is not conformal at $z_{0}=0$, we can find a region that will be mapped conformally. For example, consider the right half-plane $\{\operatorname{Re}(z)>0\}$. This region is mapped conformally by $w=z^{2}$ onto the slit plane $\mathbb{C} \backslash(-\infty, 0]$, as illustrated in Figures 3 and 4.

Figure 3: $\{\operatorname{Re}(z)>0\}$

Figure 4: Image under the map $f(z)=z^{2}$.
(c) Consider now the Joukowsky map

$$
\begin{equation*}
w=z+\frac{1}{z} \tag{1}
\end{equation*}
$$

Since

$$
\frac{d}{d z} w=1-\frac{1}{z^{2}}=0 \quad \text { if and only if } \quad z= \pm 1
$$

the Joukowsky map is conformal except at the critical points $z= \pm 1$ as well as the singularity $z=0$, where it is not defined.

If $z=e^{i \theta}$ lies on the unit circle, then

$$
w=e^{i \theta}+e^{-i \theta}=2 \cos \theta
$$

lies on the real axis, with $-2 \leq w \leq 2$. Thus, the Joukowsky map squashes the unit circle down to the real line segment $[-2,2]$. The images of points outside the unit circle fill the rest of the w plane, as do the images of the (nonzero) points inside the unit circle. Indeed, if we solve (1) for z, we have

$$
z=\frac{1}{2}\left(w \pm \sqrt{w^{2}-4}\right) .
$$

We see that every w except ± 2 comes from two different points z; for w not on the critical line segment $[-2,2]$, one point (with the minus sign) lies inside and one (with the plus sign) lies outside the unit circle, whereas if $-2<w<2$, both points lie on the unit circle and a common vertical line.

Therefore, the Joukowski map

$$
f(z)=z+\frac{1}{z}
$$

defines a one-to-one conformal mapping from the exterior of the unit circle $\{|z|>1\}$ onto the exterior of the line segment $\mathbb{C} \backslash[-2,2]$.

Figure 5: Concentric circles $|z|=r \geq 1$.

Figure 6: Image under the Joukowski map.
(2) Show that $u(x, y)$ is harmonic in some domain and find a harmonic conjugate when
(a) $u(x, y)=2 x(1-y)$
(b) $u(x, y)=2 x-x^{3}+3 x y^{2}$
(c) $u(x, y)=\sinh x \sin y$
(d) $u(x, y)=\frac{x}{x^{2}+y^{2}}$

Solutions:
(a) When $u(x, y)=2 x(1-y)$, we have that

$$
u_{x}=2-2 y, \quad u_{y}=-2 x
$$

and

$$
u_{x x}=0, \quad u_{y y}=0
$$

Thus

$$
u_{x x}+u_{y y}=0 .
$$

To find a harmonic conjugate $v(x, y)$, we start with $u_{x}(x, y)=2-2 y$. Now, using Cauchy-Riemann equations

$$
u_{x}=v_{y} \Longrightarrow v_{y}=2-2 y \Longrightarrow v(x, y)=2 y-y^{2}+g(x) .
$$

Then

$$
u_{y}=-v_{x} \Longrightarrow-2 x=-g^{\prime}(x) \Longrightarrow g^{\prime}(x)=2 x \Longrightarrow g(x)=x^{2}+c \quad(c \in \mathbb{R})
$$

Consequently

$$
v(x, y)=2 y-y^{2}+\left(x^{2}+c\right)=x^{2}-y^{2}+2 y+c \quad(c \in \mathbb{R}) .
$$

(b) When $u(x, y)=2 x-x^{3}+3 x y^{2}$, we have that

$$
u_{x}=2-3 x^{2}+3 y^{2}, \quad u_{y}=6 x y
$$

and

$$
u_{x x}=-6 x, \quad u_{y y}=6 x
$$

Thus $u_{x x}+u_{y y}=0$.

To find a harmonic conjugate $v(x, y)$, we start with $u_{x}(x, y)=2-3 x^{2}+3 y^{2}$. Now

$$
u_{x}=v_{y} \Longrightarrow v_{y}=2-3 x^{2}+3 y^{2} \Longrightarrow v(x, y)=2 y-3 x^{2} y+y^{3}+g(x)
$$

Then

$$
u_{y}=-v_{x} \Longrightarrow 6 x y=6 x y-g^{\prime}(x) \Longrightarrow g^{\prime}(x)=0 \Longrightarrow g(x)=c \quad(c \in \mathbb{R})
$$

Consequently

$$
v(x, y)=2 y-3 x^{2} y+y^{3}+c \quad(c \in \mathbb{R})
$$

(c) When $u(x, y)=\sinh x \sin y$, we have that

$$
u_{x}=\cosh x \sin y, \quad u_{y}=\sinh x \cos y
$$

and

$$
u_{x x}=\sinh x \sin y, \quad u_{y y}=-\sinh x \sin y
$$

Thus $u_{x x}+u_{y y}=0$.
To find a harmonic conjugate $v(x, y)$, we start with $u_{x}(x, y)=\cosh x \sin y$. Now

$$
u_{x}=v_{y} \Longrightarrow v_{y}=\cosh x \sin y \Longrightarrow v(x, y)=-\cosh x \cos y+g(x)
$$

Then
$u_{y}=-v_{x} \Longrightarrow \sinh x \cos y=\sinh x \cos y-g^{\prime}(x) \Longrightarrow g^{\prime}(x)=0 \Longrightarrow g(x)=c \quad(c \in \mathbb{R})$.
Consequently

$$
v(x, y)=-\cosh x \cos y+c \quad(c \in \mathbb{R})
$$

(d) Finally for $u(x, y)=\frac{x}{x^{2}+y^{2}}$, we have that

$$
u_{x}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}, \quad u_{y}=\frac{-2 x y}{\left(x^{2}+y^{2}\right)^{2}}
$$

and

$$
u_{x x}=2 x \frac{x^{2}-3 y^{2}}{\left(x^{2}+y^{2}\right)^{3}}, \quad u_{y y}=-2 x \frac{x^{2}-3 y^{2}}{\left(x^{2}+y^{2}\right)^{3}}
$$

Thus $u_{x x}+u_{y y}=0$.

To find a harmonic conjugate $v(x, y)$, we start with $u_{x}(x, y)=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}$. Now

$$
u_{x}=v_{y} \Longrightarrow v_{y}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}} \Longrightarrow v(x, y)=-\frac{y}{x^{2}+y^{2}}+g(x)
$$

Then

$$
\begin{aligned}
u_{y}= & -v_{x} \Longrightarrow \frac{-2 x y}{\left(x^{2}+y^{2}\right)^{2}}=-\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}-g^{\prime}(x) \\
& \Longrightarrow g^{\prime}(x)=0 \Longrightarrow g(x)=c \quad(c \in \mathbb{R})
\end{aligned}
$$

Consequently

$$
v(x, y)=-\frac{y}{x^{2}+y^{2}}+c \quad(c \in \mathbb{R})
$$

(3) Let $f(z)$ be an analytic function on a domain Ω that does not include the origin. Using polar coordinates in Ω, f has the form

$$
f(z)=u(r, \theta)+i v(r, \theta)
$$

(a) Using the chain rule, show that all partial derivatives of u and v of first and second order with respect to r and/or θ are continuous (indeed, all partial derivatives of any order are).
(b) Using the Cauchy-Riemann equations in polar coordinates, show that u satisfies

$$
r^{2} u_{r r}+r u_{r}+u_{\theta \theta}=0 .
$$

This is the polar form of Laplace's equation, after having multiplied through by r^{2} : the Laplacian Δ is given in spherical coordinates by $\frac{1}{r^{2}}\left(r^{2} \frac{\partial^{2}}{\partial r^{2}}+r \frac{\partial}{\partial r}+\frac{\partial^{2}}{\partial \theta^{2}}\right)$.
(c) Show that v satisfies

$$
r^{2} v_{r r}+r v_{r}+v_{\theta \theta}=0 .
$$

(d) Give a procedure which finds the harmonic conjugate of a given harmonic function u given in polar coordinates (don't transform to cartesian coordinates: the harmonic conjugate v should be expressed as $v(r, \theta)$).
(e) Verify directly that the function $u(r, \theta)=\ln \left(r^{2}\right)$ is harmonic on the domain $\{z \mid r>$ $0,0<\arg z<2 \pi\}$, and use your procedure from part (d) to calculate a harmonic conjugate.

Solution: (a) Since $f(z)$ is analytic on $\Omega, f(z)$ is also differentiable on Ω. Then the first-order partial derivatives of u and v with respect to x and y exist everywhere in some neighbourhood of a given nonzero point $z_{0} \in \Omega$ and are continuous at z_{0}.

Now the chain rule for differentiating real-valued functions of two real variables can be used to write polar form of $u(r, \theta)$ and $v(r, \theta)$ in terms of the ones with respect to x and y.

$$
\frac{\partial u}{\partial r}=\frac{\partial u}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial r} \quad \text { and } \quad \frac{\partial u}{\partial \theta}=\frac{\partial u}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial \theta}
$$

Thus

$$
u_{r}=u_{x} \cos \theta+u_{y} \sin \theta
$$

and

$$
u_{\theta}=-u_{x} r \sin \theta+u_{y} r \cos \theta .
$$

This means that u_{r} and u_{θ} are continuous.
Now, in a similar way, using the following expressions

$$
\frac{\partial v}{\partial r}=\frac{\partial v}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial v}{\partial y} \frac{\partial y}{\partial r} \quad \text { and } \quad \frac{\partial v}{\partial \theta}=\frac{\partial v}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial v}{\partial y} \frac{\partial y}{\partial \theta}
$$

we obtain

$$
v_{r}=v_{x} \cos \theta+v_{y} \sin \theta
$$

and

$$
v_{\theta}=-v_{x} r \sin \theta+v_{y} r \cos \theta .
$$

Hence, v_{r} and v_{θ} are also continuous.
(b) The Cauchy-Riemann equations in polar coordinates are

$$
r u_{r}=v_{\theta} \quad \text { and } \quad u_{\theta}=-r v_{r}
$$

Then

$$
r u_{r}=v_{\theta} \Longrightarrow r u_{r r}+u_{r}=v_{\theta r} \Longrightarrow r^{2} u_{r r}+r u_{r}=r v_{\theta r}
$$

and

$$
u_{\theta}=-r v_{r} \Longrightarrow u_{\theta \theta}=-r v_{r \theta}
$$

Adding these two equations we obtain

$$
r^{2} u_{r r}+r u_{r}+u_{\theta \theta}=r v_{\theta r}-r v_{r \theta} .
$$

Now, since $v_{r \theta}=v_{\theta r}$, we have

$$
r^{2} u_{r r}+r u_{r}+u_{\theta \theta}=0 .
$$

(c) This can be shown in a similar way to part (b).
(d) We can use Cauchy-Riemann equations in polar coordinates

$$
r u_{r}=v_{\theta} \quad \text { and } \quad u_{\theta}=-r v_{r} .
$$

(e) Here we can use part (b). If $u(r, \theta)=\ln \left(r^{2}\right)=2 \ln r$, with $r>0$, then

$$
r^{2} u_{r r}+r u_{r}+u_{\theta \theta}=r^{2}\left(-\frac{2}{r^{2}}\right)+r\left(\frac{2}{r}\right)+0=0
$$

This means that the function $u(r, \theta)=\ln \left(r^{2}\right)$ is harmonic on the domain $\{z \mid r>0,0<$ $\arg z<2 \pi\}$.
Now, from Cauchy-Riemann equation $r u_{r}=v_{\theta}$ and the derivative $u_{r}=\frac{2}{r}$, we obtain $v_{\theta}=2$. Then

$$
v(r, \theta)=2 \theta+g(r)
$$

where $g(r)$ is an arbitrary differentiable function of r. Using the other Cauchy-Riemann equation $u_{\theta}=-r v_{r}$ we get $0=-r g^{\prime}(r)$. In other words, $g^{\prime}(r)=0$ and so $g(r)=c$, with $c \in \mathbb{R}$. Therefore $v(r, \theta)=2 \theta+c$ is a harmonic conjugate of $u(r, \theta)=\ln \left(r^{2}\right)$.

