# SCHOOL OF MATHEMATICS AND PHYSICS 

MATH3401
Tutorial Worksheet
Semester 1, 2024, Week 8
(1) Evaluate $\int_{C} f(z) d z$ for the following functions $f$ and contours $C$.
(a) $f(z)=\pi \exp (\pi \bar{z})$ and $C$ is the boundary of the square with vertices at the points

$$
0,1,1+i, \text { and } i
$$

The orientation of $C$ being in the counterclockwise direction.
(b) $f(z)$ is the branch

$$
z^{-1+i}=\exp [(-1+i) \log z] \quad(|z|>0,0<\arg z<2 \pi)
$$

of the indicated power function, and $C$ is unit circle $z=e^{i \theta}(0 \leq \theta \leq 2 \pi)$.
(c) $f(z)$ is the principal branch

$$
z^{i}=\exp [i \log z] \quad(|z|>0,-\pi<\operatorname{Arg} z<\pi)
$$

of this power function, and $C$ is semicircle $z=e^{i \theta}(0 \leq \theta \leq \pi)$.
(2) Evaluate the integral $\int_{C} \operatorname{Re}(z) d z$ for the following contours $C$ from -4 to 4 :

1. The line segments from -4 to $-4-4 i$ to $4-4 i$ to 4 ;
2. the lower half of the circle with radius 4 , centre 0 ;
3. the upper half of the circle with radius 4 , centre 0 .
4. What conclusions (if any) can you draw about the function $z \mapsto \operatorname{Re}(z)$ from this?
(3) Evaluate the following integrals, justifying your procedures. For b) you should also state why the integral is well defined (i.e., independent of the path taken).
(a) $\int_{C}\left(e^{z}+\frac{1}{z}\right) d z$, where $C$ is the lower half of the circle with radius 1 , centre 0 , negatively oriented;
(b) $\int_{\pi i}^{2 \pi i} \cosh z d z$.
(4) Let $C_{R}$ denote the upper half of the circle $|z|=R(R>2)$, taken in the counterclockwise direction. Show that

$$
\left|\int_{C_{R}} \frac{2 z^{2}-1}{z^{4}+5 z^{2}+4} d z\right| \leq \frac{\pi R\left(2 R^{2}+1\right)}{\left(R^{2}-1\right)\left(R^{2}-4\right)}
$$

Then, by dividing the numerator and denominator on the right here by $R^{4}$, show that the value of the integral tends to zero as $R$ tends to infinity.
(5) Show that

$$
\int_{-1}^{1} z^{i} d z=\frac{1+e^{-\pi}}{2}(1-i)
$$

where the integrand denotes the principal branch

$$
z^{i}=\exp [i \log z] \quad(|z|>0,-\pi<\operatorname{Arg} z<\pi)
$$

of $z^{i}$ and where the path of integration is any contour from $z=-1$ to $z=1$ that, except for its end points, lies above the real axis. (Compare with problem 1c).

Suggestion: Try to use an antiderivative of the branch

$$
z^{i}=\exp [i \log z] \quad\left(|z|>0,-\frac{\pi}{2}<\arg z<\frac{3 \pi}{2}\right)
$$

(6) Find the value of the integral of $f(z)$ around the circle $|z-i|=2$ in the positive sense when
(a) $f(z)=\frac{1}{z^{2}+4}$;
(b) $f(z)=\frac{1}{\left(z^{2}+4\right)^{2}}$.

Suggestion: Use Cauchy Integral Formula and its extension.

