SCHOOL OF MATHEMATICS AND PHYSICS

MATH3401
Tutorial Worksheet
Semester 1, 2024, Week 10
(1) Determine where the function $f(z)=z-e^{-z}+1-i$ is conformal.
(2) Find all points where the function $f(z)=\sin z$ is conformal.
(3) Suppose $f: \mathbb{C} \rightarrow \mathbb{C}$ is analytic at a point $z_{0} \in \mathbb{C}$. The angle of rotation of f at z_{0} is defined to be the argument of $f^{\prime}\left(z_{0}\right)$.

We motivate this definition as follows: take a curve C passing through z_{0}. Let $z(t)$ be a parametrisation of the curve in a neighbourhood of z_{0}; namely
$-z(t)$ on $[a, b]$ traces a portion of C, and

- some $t_{0} \in(a, b)$ returns $z\left(t_{0}\right)=z_{0}$.

By the chain rule $\frac{d}{d t}(f(z(t)))=f^{\prime}(z(t)) z^{\prime}(t)$. Thus

$$
\arg \left[f^{\prime}\left(z\left(t_{0}\right)\right)\right]=\arg \left[f^{\prime}\left(z\left(t_{0}\right)\right)\right]+\arg \left[z^{\prime}\left(t_{0}\right)\right]
$$

The LHS is a tangent vector of the curve $f(C)$ at $f\left(z_{0}\right)$ and $z^{\prime}\left(t_{0}\right)$ is a tangent vector of C at z_{0}. Thus $\arg \left[f^{\prime}\left(z\left(t_{0}\right)\right)\right]$ measures the change of argument. Observe this quantity is independent of the curve C we chose to analyse. See Section 112 in the Brown and Churchill textbook for further discussion).

Show that the angle of rotation at a nonzero point $z_{0}=r_{0} \exp \left(i \theta_{0}\right)$ under the transformation $w=z^{n}(n=1,2, \ldots)$ is $(n-1) \theta_{0}$. Determine the scale factor of the transformation at that point.
(4) Find a function harmonic in the upper half of the z-plane, $\operatorname{Im} z>0$, which takes the values on the x axis: $G(x)=1$ for $x>0$, and $G(x)=0$ for $x<0$.
(5) Find a function harmonic inside the unit circle $|z|=1$ and taking the values $F(\theta)=1$ for $0<\theta<\pi$, and $F(\theta)=0$ for $\pi<\theta<2 \pi$ on its circumference.

