# SCHOOL OF MATHEMATICS AND PHYSICS <br> MATH3401 <br> Tutorial Worksheet <br> Semester 1, 2024, Week 10 

(1) Determine where the function $f(z)=z-e^{-z}+1-i$ is conformal.

Solution: It is easy to verify that $f(z)=z-e^{-z}+1-i$ is entire on $\mathbb{C}$. Now $f^{\prime}(z)=$ $1+e^{-z}=0$ if

$$
\begin{aligned}
e^{z}\left(1+e^{-z}\right) & =e^{z}(0) \\
e^{z}+1 & =0 \\
e^{z} & =-1 \\
z & =\log (-1)=\ln |-1|+i \arg (-1) \\
z & =i(\pi+2 \pi n) \\
z & =(2 n+1) \pi i,
\end{aligned}
$$

for $n \in \mathbb{Z}$. Hence, $f$ is conformal for all $z$ except $z=(2 n+1) \pi i, n \in \mathbb{Z}$.
(2) Find all points where the function $f(z)=\sin z$ is conformal.

Solution: The function $f(z)=\sin z$ is entire on $\mathbb{C}$ and we have that $f^{\prime}(z)=\cos z$. Now $\cos z=0$ if and only if $z=(2 n+1) \pi / 2, n \in \mathbb{Z}$ and so each of these points is a critical point of $f$. Therefore, $f$ is conformal for all $z$ except $z=(2 n+1) \pi / 2, n \in \mathbb{Z}$.
(3) Show that the angle of rotation at a nonzero point $z_{0}=r_{0} \exp \left(i \theta_{0}\right)$ under the transformation $w=z^{n}(n=1,2, \ldots)$ is $(n-1) \theta_{0}$. Determine the scale factor of the transformation at that point.

Solution: Notice that $f^{\prime}(z)=n z^{n-1}$. Now for $z_{0}=r_{0} e^{i \theta_{0}}$ we have

$$
f^{\prime}\left(r_{0} e^{i \theta_{0}}\right)=n^{\prime}\left(r_{0} e^{i \theta_{0}}\right)^{n-1}
$$

Thus the angle of rotation is

$$
\arg \left[f^{\prime}\left(r_{0} e^{i \theta_{0}}\right)\right]=\arg \left[n\left(r_{0} e^{i \theta_{0}}\right)^{n-1}\right]=(n-1) \theta_{0}
$$

and the scale factor is

$$
\left|f^{\prime}\left(r_{0} e^{i \theta_{0}}\right)\right|=\left|n r_{0}^{n-1} e^{i(n-1) \theta_{0}}\right|=n r_{0}^{n-1}
$$

See Section 112 in the Brown and Churchill textbook for further discussion on the angle of rotation.
(4) Find a function harmonic in the upper half of the $z$-plane, $\operatorname{Im} z>0$, which takes the prescribe values on the $x$ axis given by $G(x)=1$ for $x>0$, and $G(x)=0$ for $x<0$.

Solution: We need to find $\Phi(x, y)$ such that

$$
\begin{gathered}
\nabla^{2} \Phi=0, \quad-\infty<x<\infty, y>0 \\
\Phi=1, x>0 ; \quad \Phi=0, x<0
\end{gathered}
$$

This is a Dirichlet problem for the upper half plane.


Figure 1: Upper half plane.

The function $A \theta+B$, where $A$ and $B$ are real constants, is harmonic since it is the imaginary part of $A \log (z)+B i$. To determine $A$ and $B$ note that the boundary conditions are $\Phi=1$ for $x>0$, that is, $\theta=0$ and $\Phi=0$ for $x<0$, that is $\theta=\pi$. Thus

$$
1=A(0)+B, \quad 0=A(\pi)+B
$$

from which $A=-1 / \pi, B=1$. Then the required solution is

$$
\Phi=A \theta+B=1-\frac{\theta}{\pi}=1-\frac{1}{\pi} \operatorname{Arg} z
$$

We can write this as

$$
\Phi(x, y)=1-\frac{1}{\pi} \arctan (y / x)
$$

for $y>0$, where we take arctan to be the inverse of $\tan$ taking values in $(0, \pi]$. Notice for this arctan,

$$
\lim _{x \rightarrow 0^{+}} \arctan (x)=0, \quad \lim _{x \rightarrow 0^{-}} \arctan (x)=\pi
$$

(indeed, draw a graph of $y=\tan (x)$ with $x$ restricted to $(0, \pi])$. It follows that

$$
\lim _{y \rightarrow 0^{+}} \Phi(x, y)= \begin{cases}1 & x>0 \\ 0 & x<0\end{cases}
$$

(5) Find a function harmonic inside the unit circle $|z|=1$ and taking the prescribed values given by $F(\theta)=1$ for $0<\theta<\pi$, and $F(\theta)=0$ for $\pi<\theta<2 \pi$ on its circumference.

Solution: This is a Dirichlet problem for the unit circle in which we need to find a function satisfying Laplace's equation inside $|z|=1$ and taking the values 1 on the upper arc of the circle and 0 on the lower arc of the circle.


Figure 2: Unit circle.


Figure 3: Image under $w=i(1-z) /(1+z)$.

We map the interior of the circle $|z|=1$ on to the upper half of the $w$ plane by using the mapping

$$
w=i \frac{1-z}{1+z}
$$

Under this transformation, the upper and lower arcs are mapped on to the positive and negative real axis on the $w$-plane respectively. This means that the boundary conditions $\Phi=1$ on the upper arc of the circle and $\Phi=0$ on the lower arc of the circle become respectively $\Phi=1$ for $u>0$ and $\Phi=0$ for $u<0$.

Thus we have reduced the problem to finding a function $\Phi$ harmonic in the upper half $w$-plane and taking the values 0 for $u<0$ and 1 for $u>0$. But this problem has already been solved in the previous exercise, and the solution (replacing $x$ by $u$ and $y$ by $v$ ) is given by

$$
\begin{equation*}
\Phi=1-\frac{1}{\pi} \arctan \left(\frac{v}{u}\right) \tag{1}
\end{equation*}
$$

Now from $w=i(1-z) /(z+1)$, we find

$$
u=\frac{2 y}{(1+x)^{2}+y^{2}}, \quad v=\frac{1-\left(x^{2}+y^{2}\right)}{(1+x)^{2}+y^{2}}
$$

Then substituting these in (??), we find the required solution

$$
\Phi=1-\frac{1}{\pi} \arctan \left(\frac{1-\left(x^{2}+y^{2}\right)}{2 y}\right)
$$

or in polar coordinates $(r, \theta)$

$$
\Phi=1-\frac{1}{\pi} \arctan \left(\frac{1-r^{2}}{2 r \sin \theta}\right) .
$$

