Mathematical Analysis: Supplementary notes I

0 FIELDS

The real numbers, \mathbb{R} , form a *field*. This means that we have a *set*, here \mathbb{R} , and two binary operations

addition, $+ : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, and multiplication, $\cdot : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$,

for which the axioms F1-F7 below hold true. Note that multiplication can also be denoted by \times , or simply by juxtaposition.

(F1) Associativity of addition: (r+s) + t = (r+s) + t for all $r, s, t \in \mathbb{R}$;

(F2)(i) Existence of additive identity: There exists $0 \in \mathbb{R}$ such that

$$r + 0 = r$$
 for all $r \in \mathbb{R}$;

(F2)(ii) Existence of additive inverse: Given $r \in \mathbb{R}$ there exists $s \in \mathbb{R}$ such that

$$r+s=0$$
 (we write $s=-r$);

(F3) Commutativity of addition: r + s = s + r for all $r, s \in \mathbb{R}$;

- (F4) Associativity of multiplication: (rs)t = r(st) for all $r, s, t \in \mathbb{R}$;
- (F5)(i) Existence of multiplicative identity: There exists $1 \in \mathbb{R}$ with $1 \neq 0$ such that

$$r \cdot 1 = r$$
 for all $r \in \mathbb{R}$;

(F5)(ii) Existence of multiplicative inverse: Given $r \in \mathbb{R} \setminus \{0\}$ there exists $t \in \mathbb{R}$ such that

$$rt = 1$$
 (we write $t = r^{-1}$);

- (F6) Commutativity of multiplication: rs = sr for all $r, s \in \mathbb{R}$;
- (F7) Distributive Law: r(s+t) = rs + rt for all $r, s, t \in \mathbb{R}$.

1 SEQUENCES

DEFINITION Let $f : \mathbb{N} \to \mathbb{R}$ (or $\mathbb{N}_0 \to \mathbb{R}$). Then f is called a sequence.

If $f(n) = a_n$, then a_n is called the nth term. It is customary to write such a sequence as $\{a_n\}$ (or $\{a_1, a_2, \ldots\}$).

DEFINITION A sequence $\{a_n\}$ is said to converge to a limit a if for every $\varepsilon > 0$ there is an integer N such that $|a_n - a| < \varepsilon$ whenever $n \ge N$. (The number N may depend on ε ; in particular, smaller ε may (and often does) require larger N). In this case we write $\lim_{n \to \infty} a_n = a$ or $a_n \to a$ as $n \to \infty$.

A sequence that does not converge is said to diverge. This can be further qualified (e.g. "the sequence diverges to $+\infty$ ").

LEAST UPPER BOUND AND GREATEST LOWER BOUND

DEFINITION Let $E \subset \mathbb{R}$, $E \neq \emptyset$. A number $b \in \mathbb{R}$ is called an upper (resp. lower) bound for E if $x \leq b$ (resp. $b \leq x$) for every $x \in E$. In the case that such a b exists, we say that E is bounded above (resp. below).

If E has both an upper bound and a lower bound, then we say that E is bounded.

DEFINITION By a **supremum** (or least upper bound) of *E* we mean a number $s \in \mathbb{R}$ such that

- (i) s is an upper bound for E and
- (ii) if b is an upper bound for E, then $s \leq b$.

If E has a supremum s, we write

 $s = \sup E.$

(The notation s = lub E is used in some textbooks)

The **infimum** (or greatest lower bound) of E is defined similarly. It is a lower bound for E which is larger than every other lower bound for E. We write inf E (or glb E).

Axiom 5 (Supremum principle) Every nonempty set of real number that is bounded above has a supremum in \mathbb{R} .

Every nonempty set of real numbers that is bounded below has an infimum in \mathbb{R} .

MONOTONE SEQUENCES

DEFINITION A sequence $\{a_n\}$ is said to be :

nondecreasing if $a_n \leq a_{n+1}$;

nonincreasing if $a_n \ge a_{n+1}$;

strictly increasing if $a_n < a_{n+1}$;

strictly decreasing if $a_n > a_{n+1}$,

for every $n \in \mathbb{N}$. All such sequences are said to be **monotone**, in the latter two cases **strictly monotone**.

EXAMPLE The number e. For every $n \in \mathbb{N}$, let

$$a_n = \left(1 + \frac{1}{n}\right)^n, \quad b_n = \left(1 + \frac{1}{n}\right)^{n+1}.$$

Then

- (i) $\{a_n\}$ is strictly increasing,
- (ii) $\{b_n\}$ is strictly decreasing,
- (iii) $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$.

The common limit of these two sequences is denoted by e. There holds 2 < e < 4.

LIMSUP and LIMINF

Even though a sequence need not have a limit, there are two important real numbers which can be associated with every sequence of real numbers.

DEFINITION Let $\{a_n\} \subset \mathbb{R}$. For every $k \in \mathbb{N}$ define

$$y_k = \inf\{a_n; n \in \mathbb{N}, n \ge k\}$$
$$z_k = \sup\{a_n; n \in \mathbb{N}, n \ge k\}.$$

We have

 $y_1 \le y_2 \le y_3 \le \dots$ and $z_1 \ge z_2 \ge z_3 \ge \dots$

Let

$$y = \lim_{k \to \infty} y_k = \sup\{y_k; k \in \mathbb{N}\}$$
$$z = \lim_{k \to \infty} z_k = \inf\{z_k; k \in \mathbb{N}\}.$$

The numbers y and z are called the **limit inferior** of $\{a_n\}$ and the **limit superior** of $\{a_n\}$, respectively. Note: y and/or z may be $+\infty$ or $-\infty$.

We write

$$y = \liminf_{n \to \infty} a_n = \sup_k \inf\{a_n; n \in \mathbb{N}, n \ge k\},$$
$$z = \limsup_{n \to \infty} a_n = \inf_k \sup\{a_n; n \in \mathbb{N}, n \ge k\}.$$

A useful tool in the study of sequences is the notion of a **cluster point**.

DEFINITION. A point x is called a cluster point of the sequence $\{x_n\}$ if for every $\varepsilon > 0$ there are infinitely many values of n with $|x_n - x| < \varepsilon$.

Let $\{x_n\}$ be a sequence in \mathbb{R} that is bounded above. The limit superior of x_n ($\limsup_{n \to \infty} x_n$) is the greatest cluster point of $\{x_n\}$; equivalently, it is the supremum of the set of cluster points. If the sequence is not bounded above, $\limsup_{n \to \infty} x_n = \infty$.

Similarly, if $\{x_n\}$ is bounded below, the limit inferior of x_n $(\liminf_{n \to \infty} x_n)$ is the infimum of the set of cluster points. If $\{x_n\}$ is not bounded below, $\liminf_{n \to \infty} x_n = -\infty$.

CAUCHY SEQUENCES

DEFINITION A sequence $\{x_n\}$ of real numbers is called a **Cauchy sequence** if for every number $\varepsilon > 0$, there is an integer N (depending on ε) such that $|x_n - x_m| < \varepsilon$ whenever $n \ge N$ and $m \ge N$.

2 SERIES

DEFINITION Let $\{a_n\} \subset \mathbb{R}$ and define

$$s_n = \sum_{k=1}^n a_k = a_1 + a_2 + \ldots + a_n$$

for each $n \in \mathbb{N}$.

The symbol $\sum_{n=1}^{\infty} a_n$ or $a_1 + a_2 + \ldots$ is called an **infinite series** having nth term a_n and nth partial sum s_n .

DEFINITION A series $\sum_{n=1}^{\infty} a_n$ is said to converge to $a \in \mathbb{R}$ if the sequence of **partial** sums $s_n = \sum_{k=1}^n a_k$ converges to a, and if so we write

$$a = \sum_{n=1}^{\infty} a_n.$$

Otherwise, we say that $\sum_{n=1}^{\infty} a_n$ diverges.

Cauchy criterion Let $\{a_n\} \subset \mathbb{R}$. A series $\sum_{n=1}^{\infty} a_n$ converges if and only if for every $\varepsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that

$$\left|\sum_{n=p+1}^{q} a_n\right| < \varepsilon \quad whenever \quad q > p \ge n_0.$$

Geometric series. Let $a \in \mathbb{R}$ and $r \in \mathbb{R}$. Then $\sum_{n=0}^{\infty} ar^n$ converges and its sum is $\frac{a}{1-r}$ if |r| < 1. If $a \neq 0$ and $|r| \ge 1$, then this series diverges.

By the formula for geometric progressions we have $(r \neq 1)$:

$$s_n = \sum_{k=0}^n ar^k = a \frac{1 - r^{n+1}}{1 - r}$$

Assuming that |r| < 1, $\lim_{n\to\infty} s_n = \frac{a}{1-r}$. If $a \neq 0$ and $|r| \ge 1$, then $|ar^n| \ge |a| \neq 0$ and this shows that the series cannot converge.

Comparison test Suppose that $0 \le a_n \le b_n$ for all but finitely many $n \in \mathbb{N}$.

- (1) If $\sum_{n} b_{n}$ converges, then $\sum_{n} a_{n}$ converges.
- (2) If $\sum_{n} a_n$ diverges, then $\sum_{n} b_n$ diverges.

ABSOLUTE CONVERGENCE

DEFINITION We say that $\sum_{n=1}^{\infty} a_n$ converges absolutely if $\sum_{n=1}^{\infty} |a_n|$ converges.

Leibniz's alternating test Let $\{a_n\}$ be a nonincreasing sequence of positive numbers such that $\lim_{n\to\infty} a_n = 0$. Then $\sum_{n=1}^{\infty} (-1)^n a_n$ is convergent.

Root test (Cauchy) Let $\sum_{n=1}^{\infty} a_n$ and

$$\rho = \limsup_{n \to \infty} \sqrt[n]{|a_n|}.$$

(i) If $\rho < 1$, the series converges absolutely,

(ii) If $\rho > 1$, the series diverges.

(iii) If $\rho = 1$, then the test is inconclusive.

Ratio test (d'Alembert) Let $\sum_{n=1}^{\infty} a_n$ be a series with $a_n \neq 0$ for every n.

- (i) If $\limsup_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$, then the series converges absolutely.
- (ii) If $\liminf_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$, then the series diverges.
- (iii) If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$, then the test is inconclusive.

3 LIMITS AND CONTINUITY

DEFINITION Let $X \subset \mathbb{R}$ and $a \in \mathbb{R}$. We call a a **limit point** (or **accumulation point**) of X if every interval $(-\delta + a, a + \delta), \delta > 0$, contains at least one point of X other than a (a need **not** be in X).

All points of X that are not limit points of X are called **isolated points** of X.

DEFINITION Let $f : X \to \mathbb{R}, X \subset \mathbb{R}$ and let *a* be a limit point of *X*. We say that *f* converges to the limit ℓ as *x* approaches *a* if for every $\varepsilon > 0$ there is a $\delta > 0$ such that

$$|f(x) - \ell| < \varepsilon$$
 whenever $0 < |x - a| < \delta$ and $x \in X$

Theorem 1 Let $\lim_{x \to a} f(x) = \ell$ and $\lim_{x \to a} g(x) = m$. Then

(i)
$$\lim_{x \to a} (f(x) \pm g(x)) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x) = \ell \pm m,$$

- (ii) $\lim_{x \to a} \alpha f(x) = \alpha \lim_{x \to a} f(x) = \alpha \ell$ for every $\alpha \in \mathbb{R}$,
- (iii) if $m \neq 0$, then $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{\ell}{m}$,
- (iv) $\lim_{x \to a} f(x)g(x) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) = \ell m.$

Theorem 2 (Squeeze principle) Let $f : X \to \mathbb{R}$, $g : X \to \mathbb{R}$, $h : X \to \mathbb{R}$ be such that $f(x) \leq g(x) \leq h(x)$ for all $x \in X$. If $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = \ell$, then $\lim_{x \to a} g(x) = \ell$.

LIMITS AT INFINITY

DEFINITION Let $f: [a, \infty) \to \mathbb{R}$. We say that $\lim_{x \to \infty} f(x) = \ell$ if and only if for every $\varepsilon > 0$ there exists M > 0 (think of M as needing to be large if ε is small) such that

$$|f(x) - \ell| < \varepsilon$$
 whenever $x \ge M$.

We say that $\lim_{x\to\infty} f(x) = \infty$ if and only if for every N > 0 there exists M > 0 such that $f(x) \ge N$ whenever x > M.

In a similar manner we define limits at $-\infty$.

The squeeze principle remains valid for limits at ∞ $(-\infty)$.

EXAMPLE Let $f(x) = \frac{\sin x}{1+|x|}$. For every $x \in \mathbb{R}$ we have

$$-\frac{1}{1+|x|} \le \frac{\sin x}{1+|x|} \le \frac{1}{1+|x|}.$$

Since $\lim_{x \to \infty} \frac{1}{1+|x|} = 0$, we also have $\lim_{x \to \infty} f(x) = 0$.

CONTINUOUS FUNCTIONS

DEFINITION Let $f : (a, b) \to \mathbb{R}$ and $x_0 \in (a, b)$. We say that f is continuous at x_0 if $\lim_{x \to x_0} f(x) = f(x_0)$.

This means: f is continuous at x_0 if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$|f(x) - f(x_0)| < \varepsilon$$
 whenever $|x - x_0| < \delta$.

The function f is continuous on (a, b) if f is continuous at each point of (a, b).

Theorem 3 Let f and g be defined on (a, b) and continuous at the point $x_0 \in (a, b)$, and let λ be a constant. Then

- (i) $\lambda \cdot f(x)$ is continuous at x_0 ,
- (ii) $f(x) \pm g(x)$ is continuous at x_0 ,

(iii) $f(x) \cdot g(x)$ is continuous at x_0 ,

(iv) $\frac{f(x)}{g(x)}$ is continuous at x_0 , provided $g(x_0) \neq 0$.

Theorem 4 (composition of functions) Let $\lim_{x \to x_0} g(x) = \ell$ and let f be continuous at ℓ : then there holds $\lim_{x \to x_0} f((g(x)) = f(\ell))$.

If g is continuous at x_0 and f is continuous at $g(x_0)$, then $f \circ g(x) = f(g(x))$ is continuous at x_0 .

DEFINITION Let I be an interval, $f: I \to \mathbb{R}$. We say that f is uniformly continuous on I if for every $\varepsilon > 0$ there is a $\delta > 0$ such that

 $x, y \in I$ and $|x - y| < \delta$ imply $|f(x) - f(y)| < \varepsilon$.

Theorem 5 Let $f : [a, b] \to \mathbb{R}$ be continuous. Then f is uniformly continuous.

PROPERTIES OF CONTINUOUS FUNCTIONS

Intermediate Value Theorem Let λ be a constant and $f : [a,b] \to \mathbb{R}$ continuous on [a,b].

If $f(a) < \lambda < f(b)$ or $f(a) > \lambda > f(b)$, then there is a $c \in (a, b)$ such that $f(c) = \lambda$.

DEFINITION We say that a function f attains its minimum (maximum) value on a set $\Omega \subset \mathbb{R}$ at $a \in \Omega$ if $f(x) \ge f(a)$ ($f(x) \le f(a)$) for all $x \in \Omega$. We say that a function f has an **extremum** at a on Ω if it attains its maximum or its minimum value on Ω at a.

Extreme value theorem A continuous function f on a closed interval [a, b] attains its maximum and minimum values on [a, b].

4 SEQUENCES AND SERIES OF FUNCTIONS

An important way to construct nontrivial functions is to obtain them as limits of sequences or series of given functions.

DEFINITION (pointwise convergence) Let $X \subset \mathbb{R}$ and $f_n : X \to \mathbb{R}$ for each $n \in \mathbb{N}$. The sequence $\{f_n\}$ is said to be *pointwise convergent on* X if there exists a function $f : X \to \mathbb{R}$ such that $f(x) = \lim_{n\to\infty} f_n(x)$ for every $x \in X$. In this case, f is called the *pointwise limit* on X of the sequence $\{f_n\}$.

DEFINITION (uniform convergence) The sequence $\{f_n\}$ is said to be uniformly convergent on X if there exists a function $f: X \to \mathbb{R}$ such that for every $\varepsilon > 0$ there exists an $N \in \mathbb{N}$ such that

$$|f_n(x) - f(x)| < \varepsilon$$
 whenever $n \ge N$ and $x \in X$.

The number N may depend on ε but not on x.

Theorem 1 Let $f_n : [a,b] \to \mathbb{R}$ be continuous for each $n \in \mathbb{N}$. If $f_n \to f$ uniformly on [a,b], then f is continuous on [a,b].

Theorem 2 (Cauchy condition) Let $X \subset \mathbb{R}$ and $f_n : X \to \mathbb{R}$. Then the following two assertions are equivalent:

- (i) $\{f_n\}$ is uniformly convergent,
- (ii) for every $\varepsilon > 0$ there exists some $N \in \mathbb{N}$ such that for every $x \in X$

 $|f_n(x) - f_m(x)| < \varepsilon$ whenever $n, m \ge N$.

SERIES OF FUNCTIONS

Let $f_n: X \to \mathbb{R}, X \subset \mathbb{R}$ and

$$s_n(x) = f_1(x) + \ldots + f_n(x).$$

DEFINITION If $\{s_n(x)\}$ is pointwise convergent on X to s(x), then we say that the series $\sum_{k=1}^{\infty} f_k(x)$ is *pointwise convergent* on X and that s is its *pointwise sum* on X. If $\{s_n(x)\}$ is uniformly convergent on X to s(x), then we say that the series $\sum_{k=1}^{\infty} f_k(x)$ is uniformly convergent on X to s(x), then we say that the series $\sum_{k=1}^{\infty} f_k(x)$ is uniformly convergent on X and that s is its uniform sum on X.

Theorem 3 (Weierstrass *M*-test) Let $X \subset \mathbb{R}$ and $f_n : X \to \mathbb{R}$. Suppose that there exists a sequence $\{M_n\}$ of nonnegative numbers such that $\sum_{n=1}^{\infty} M_n < \infty$ and $|f_n(x)| \leq M_n$ for $x \in X$

and $n \in \mathbb{N}$. Then $\sum_{n=1}^{\infty} f_n(x)$ is uniformly convergent.

Theorem 4 (Abel's test) Let $A \subset \mathbb{R}$ and $\phi_n : A \to \mathbb{R}$ be a decreasing sequence of functions, that is, $\phi_{n+1}(x) \leq \phi_n(x)$ for every $x \in A$. Suppose that there is a constant M such that $|\phi_n(x)| \leq M$ for every $x \in A$ and every n. If $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on A, then so $does \sum_{i=1}^{\infty} \phi_n(x) f_n(x)$.

ⁿ⁼¹ **Theorem 5** (Dirichlet's test) Let $s_n(x) = \sum_{k=1}^n f_k(x)$ for a sequence $f_k : A \to \mathbb{R}$. Assume that there is a constant M such that $|s_n(x)| \leq M$ for every $x \in A$ and every n. Let $g_n : A \to \mathbb{R}$ be such that $g_n \to 0$ uniformly, $g_n \geq 0$ and $g_{n+1}(x) \leq g_n(x)$. Then $\sum_{n=1}^{\infty} f_n(x)g_n(x)$ converges uniformly on A.

5 DIFFERENTIATION OF FUNCTIONS OF ONE VARIABLE

DEFINITION Let a function f be defined on some open interval containing $x_0 \in \mathbb{R}$. We say that f is **differentiable** at x_0 if

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

exists. We call $f'(x_0)$ the derivative of f at x_0 . Rewriting this condition as

$$\lim_{x \to x_0} \frac{f(x) - f(x_0) - f'(x_0)(x - x_0)}{x - x_0} = 0,$$

we see that the straight line $y = f(x_0) + f'(x_0)(x - x_0)$, called the tangent line to the graph of f at x_0 , is a good approximation to f near x_0 , and rewriting it as

$$\lim_{\Delta x \to 0} \left[\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} - f'(x_0) \right] = 0,$$

we see that $f'(x_0)$, being the limit of slopes of the secant lines, can be interpreted as the slope of the tangent line to the graph of f at $(x_0, f(x_0))$.

Proposition 1 If f is differentiable at x_0 , then f is continuous at x_0 .

Theorem 2 Let $f, g: I \to \mathbb{R}$ be defined on an open interval I and differentiable at $x \in I$. Let $\alpha \in \mathbb{R}$. Then the functions αf , f + g, $f \cdot g$ and $\frac{f}{g}$ (provided $g \neq 0$) are differentiable at x. Moreover,

- (i) $(\alpha f)'(x) = \alpha f'(x),$
- (*ii*) (f+g)'(x) = f'(x) + g'(x),
- (*iii*) $(f \cdot g)'(x) = f(x)g'(x) + g(x)f'(x),$
- $(iv) \left(\frac{f(x)}{g(x)}\right)' = \frac{g(x)f'(x) f(x)g'(x)}{g(x)^2}.$

Theorem 3 (Chain rule) Let $f : I \to J$ and $g : J \to \mathbb{R}$, where I and J are open intervals. Suppose that f is differentiable at $c \in I$ and that g is differentiable at f(c). Then the composite function $g \circ f : I \to \mathbb{R}$ defined by $g \circ f(x) = g(f(x))$ is differentiable at c and

$$(g \circ f)'(c) = g'(f(c))f'(c).$$

LOCAL EXTREMA

DEFINITION Let $f : E \to \mathbb{R}$, $E \subset \mathbb{R}$. We say that f has a **local maximum** (local minimum) at c if there exists a neighbourhood U of c such that $f(x) \leq f(c)$ ($f(x) \geq f(c)$) for every $x \in U$. If f has either a local maximum or a local minimum at c, we say that f has a **local extremum** at c.

The next theorem gives a necessary, but not sufficient, condition that a local extremum exists at a given point.

Theorem 4 Let a < c < b and $f : [a, b] \to \mathbb{R}$ be given. If f has a local extremum at c and f'(c) exists, then f'(c) = 0.

Remarks

- (a) The restriction that c is not an endpoint of [a, b] is necessary. For instance, the function $f(x) = \sqrt{x}$ on [0, 1] has a local minimum at 0 and a local maximum at 1, $f'_{+}(0) = \infty$ and $f'_{-}(1) = \frac{1}{2}$.
- (b) The function $f(x) = x^3$ on (-1, 1) satisfies f'(0) = 0 but does not have a local extremum at 0.
- (c) The theorem assures us that if we are seeking all local extrema of a differentiable function on an open interval, then we need only consider, as candidates, those c for which f'(c) = 0.
- (d) If f(x) = |x| for $x \in \mathbb{R}$, then f has a local minimum at c = 0, but f'(0) does not exist.

MEAN VALUE THEOREMS

Theorem 5 (Rolle's theorem) Suppose that $f : [a, b] \to \mathbb{R}$ is continuous on [a, b], differentiable on (a, b) and f(a) = f(b). Then there exists a number $\xi \in (a, b)$ such that $f'(\xi) = 0$.

Theorem 6 (Lagrange) Let $f : [a,b] \to \mathbb{R}$ be continuous on [a,b], and differentiable on (a,b). Then there exists a point $c \in (a,b)$ such that f(b) - f(a) = f'(c)(b-a).

Theorem 7 Suppose that f is continuous on [a, b] and differentiable on (a, b).

- (i) If $f'(x) \ge 0$ for every $x \in (a, b)$, then f is nondecreasing on [a, b].
- (ii) If $f'(x) \leq 0$ for every $x \in (a, b)$, then f is nonincreasing on [a, b].
- (iii) If f'(x) > 0 for every $x \in (a, b)$, then f is strictly increasing on [a, b].
- (iv) If f'(x) < 0 for every $x \in (a, b)$, then f is strictly decreasing on [a, b].
- (v) If f'(x) = 0 for every $x \in (a, b)$, then f is constant on [a, b].

Theorem 8 Suppose that f is continuous on [a, b] and is twice differentiable on (a, b), and that $x_0 \in (a, b)$.

- (i) If $f'(x_0) = 0$ and $f''(x_0) > 0$, then x_0 is a strict local minimum of f.
- (ii) If $f'(x_0) = 0$ and $f''(x_0) < 0$, then x_0 is a strict local maximum of f.

6 INTEGRALS OF FUNCTIONS OF ONE VARIABLE

DEFINITION Let $f : [a, b] \to \mathbb{R}$ be a bounded function. We **partition** [a, b], which means we choose an integer n and points $x_0, x_1, \ldots, x_{n-1}, x_n$ in such a way that $a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b$. Denote such a partition by P, that is, let $P = \{x_0, x_1, \ldots, x_n\}$. Then form two sums

$$U(f,P) = \sum_{i=1}^{n} M_i(x_i - x_{i-1}), \text{ where } M_i = \sup_{x \in [x_{i-1}, x_i]} f(x)$$

and

$$L(f, P) = \sum_{i=1}^{n} m_i (x_i - x_{i-1}), \text{ where } m_i = \inf_{x \in [x_{i-1}, x_i]} f(x),$$

called the upper and lower Riemann sum (with respect to P), respectively.

Since f is bounded, say $-M \leq f(x) \leq M$ for every $x \in [a, b]$, we see that

(6.1)
$$-(b-a)M \le L(f,P) \le U(f,P) \le (b-a)M$$

for every partition P of [a, b].

It seems reasonable to expect that as the size of the intervals in P gets smaller, U(f, P) decreases while L(f, P) increases.

DEFINITION If P and P' are partitions of [a, b] with $P \subset P'$, then P' is called a *refinement* of P.

Lemma 1 If P' is a refinement of P, then $L(f, P) \leq L(f, P')$ and $U(f, P) \geq U(f, P')$.

According to the inequality (6.1) Riemann sums are bounded: therefore we can introduce the following notation:

$$\int_{a}^{b} f(x) dx = \inf\{U(f, P); P \text{ is any partition of } [a, b]\},\$$

the upper Riemann integral, and

$$\underline{\int_{a}^{b}} f(x) \, dx = \sup\{L(f, P); P \text{ is any partition of } [a, b]\},\$$

the lower Riemann integral.

Lemma 2 Let P_1 and P_2 be any partitions of [a, b]. Then $L(f, P_1) \leq U(f, P_2)$.

Corollary 3

$$\underline{\int_{a}^{b}} f(x) \, dx \le \overline{\int_{a}^{b}} f(x) \, dx$$

DEFINITION We say that $f : [a, b] \to \mathbb{R}$ is **Riemann integrable** or that the Riemann integral exists, if

$$\underline{\int_{a}^{b}}f(x)\,dx = \overline{\int_{a}^{b}}f(x)\,dx.$$

The common value is denoted by $\int_a^b f(x) dx$.

Theorem 4 A function $f : [a,b] \to \mathbb{R}$ is integrable on [a,b] if given any $\varepsilon > 0$ there is a partition P such that

$$U(f,P) - L(f,P) < \varepsilon.$$

Theorem 5

- (i) If $f : [a, b] \to \mathbb{R}$ is bounded and continuous at all but finitely many points of [a, b], then f is integrable on [a, b].
- (ii) Any increasing (decreasing) function on [a, b] is integrable on [a, b].

PROPERTIES OF INTEGRALS Theorem 6

(i) If f is bounded and integrable on [a, b] and $k \in \mathbb{R}$, then $k \cdot f$ is integrable on [a, b] and

$$\int_{a}^{b} k \cdot f(x) \, dx = k \int_{a}^{b} f(x) \, dx.$$

(ii) If f and g are bounded and integrable on [a, b], then f + g is integrable on [a, b] and

$$\int_a^b (f+g) \, dx = \int_a^b f \, dx + \int_a^b g \, dx.$$

(iii) If f and g are bounded and integrable on [a, b] and $f(x) \leq g(x)$ for every $x \in [a, b]$, then

$$\int_{a}^{b} f(x) \, dx \le \int_{a}^{b} g(x) \, dx.$$

(iv) If f is bounded and integrable on [a, b] and [b, c], then f is integrable on [a, c] and

$$\int_{a}^{c} f \, dx = \int_{a}^{b} f \, dx + \int_{b}^{c} f \, dx.$$

Theorem 7 (Mean value theorem) If f is continuous on [a, b], then

$$\int_{a}^{b} f(x) \, dx = f(c)(b-a)$$

for some $c \in [a, b]$.

Let $f : [a, b] \to \mathbb{R}$ be a continuous function.

DEFINITION An antiderivative of f is a continuous function $F : [a, b] \to \mathbb{R}$ such that F is differentiable on (a, b) and F'(x) = f(x) for a < x < b.

Theorem 8 Let f be bounded and integrable on [a, b]. Then |f| is integrable on [a, b], and

$$\Big|\int_{a}^{b} f \, dx\Big| \le \int_{a}^{b} |f| \, dx$$

Theorem 9 (The fundamental theorem of Calculus) Let $f : [a, b] \to \mathbb{R}$ be a continuous function. Then f has an antiderivative F and

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a).$$

If G is any other antiderivative of f, we also have

$$\int_{a}^{b} f(x) \, dx = G(b) - G(a)$$

Theorem 10 (Integration by parts) If $\frac{du}{dx}$ and $\frac{dv}{dx}$ are continuous on [a, b], then

$$\int_{a}^{b} u \frac{dv}{dx} \, dx = u(b)v(b) - u(a)v(a) - \int_{a}^{b} \frac{du}{dx} v \, dx$$

We often need to integrate unbounded functions or to integrate over unbounded regions. The resulting improper integrals lead to convergence problems analogous to those for an infinite series.

DEFINITION (improper integrals - first kind) Let $f : (a, b] \to \mathbb{R}$ and suppose that f is not necessarily bounded at a (near a) but f is integrable on $[a + \varepsilon, b]$ for every $\varepsilon > 0$ sufficiently small. We say that f is improperly integrable (or $\int_a^b f(x) dx$ exists) if

$$\lim_{\varepsilon \to 0^+} \int_{a+\varepsilon}^b f(x) \, dx$$
 exists.

If this limit exists it is denoted by $\int_a^b f(x) dx$ (that is, $\int_a^b f(x) dx = \lim_{\varepsilon \to 0^+} \int_{a+\varepsilon}^b f(x) dx$).

In a similar manner we define improper integrals $f : [a, b) \to \mathbb{R}$ (if f is unbounded near b). **DEFINITION** (improper integrals - second kind) Let $f : [a, \infty) \to \mathbb{R}$ and suppose that $\int_a^b f(x) dx$ exists for every b > a. We say that f is improperly integrable if

$$\lim_{b \to \infty} \int_a^b f(x) \, dx$$
 exists.

If this limit exists, it is denoted by $\int_a^{\infty} f(x) dx$. Similarly we define improper integrals for $f: (-\infty, a] \to \mathbb{R}$,

$$\int_{-\infty}^{a} f(x) \, dx = \lim_{b \to -\infty} \int_{b}^{a} f(x) \, dx$$

If $f: (-\infty, \infty) \to \mathbb{R}$, we set

$$\int_{-\infty}^{\infty} f(x) \, dx = \lim_{a \to -\infty} \int_{a}^{0} f(x) \, dx + \lim_{b \to \infty} \int_{0}^{b} f(x) \, dx.$$

The integral $\int_{-\infty}^{\infty} f(x) dx$ diverges if one of these limits does not exist.

Theorem 11 (Comparison test for improper integrals) Suppose $f(x) \ge 0$ and $g(x) \ge 0$ for $x \ge a$.

- (i) If $g(x) \leq f(x)$, then the convergence of $\int_a^\infty f(x) dx$ implies the convergence of $\int_a^\infty g(x) dx$.
- (ii) If $g(x) \ge f(x)$, then the divergence of $\int_a^\infty f(x) \, dx$ implies the divergence of $\int_a^\infty g(x) \, dx$.

The analogy between positive - term series and improper integrals of positive functions is the key to the **integral test**.

Theorem 12 If f is continuous, nonnegative and nonincreasing on $[1, \infty)$, then $\sum_{n=1}^{\infty} f(n)$ and $\int_{1}^{\infty} f(x) dx$ converge or diverge together.

7 TAYLOR SERIES

TAYLOR'S FORMULA

Theorem 1 (Taylor's formula) Suppose that the first (n + 1) derivatives of the function f exist on an interval containing points a and b. Then

(7.1)
$$f(b) = f(a) + f'(a)(b-a) + \frac{f''(a)}{2!}(b-a)^2 + \frac{f^{(3)}(a)}{3!}(b-a)^3 + \dots + \frac{f^{(n)}(a)}{n!}(b-a)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}(b-a)^{n+1}$$

for some number ξ between a and b.

REMARK Taylor's formula with the Cauchy form of the remainder:

$$f(b) = f(a) + f'(a)(b-a) + \frac{f''(a)}{2!}(b-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(b-a)^n + \frac{1}{n!}\int_a^b (b-t)^n f^{(n+1)}(t) dt.$$

for some number t between a and b.

TAYLOR SERIES

Suppose that f is a function with continuous derivatives of all orders in an interval (c, d). Let $a \in (c, d)$ and let n be an arbitrary positive integer. We know by Taylor's formula that

$$f(x) = P_n(x) + R_n(x),$$

where

$$P_n(x) = f(a) + f'(a)(x-a) + f''(a)\frac{(x-a)^2}{2!} + \dots + f^{(n)}(a)\frac{(x-a)^n}{n!}$$

and R_n is either the Lagrange or Cauchy remainder. Now suppose that, for some particular fixed value of x, we can show that

$$\lim_{n \to \infty} R_n(x) = 0.$$

Then it follows from (7.1) that

$$f(x) = \lim_{n \to \infty} P_n(x) = \lim_{n \to \infty} \left(\sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k \right)$$
$$= \sum_{k=0}^\infty \frac{f^{(k)}(a)}{k!} (x-a)^k.$$

The infinite series in this equation is called the **Taylor series** (of f at a).

EXAMPLES We have the following Taylor formulae for the exponential and trigonometric functions:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \frac{e^{\xi}}{(n+1)!} x^{n+1},$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \dots + (-1)^{n} \frac{x^{2n}}{(2n)!} + (-1)^{n+1} \frac{\cos \xi}{(2n+2)!} x^{2n+2},$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \dots + (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} + (-1)^{n+1} \frac{\cos \xi}{(2n+3)!} x^{2n+3},$$

In each case ξ is some number between 0 and x. Since ξ is between 0 and x, it follows that $0 < e^{\xi} \le e^{|x|}$ in Taylor's formula for e^x . In the formulas for the sine and cosine functions, $0 \le |\cos \xi| \le 1$. Therefore the fact that

$$\lim_{n \to \infty} \frac{x^n}{n!} = 0 \quad \text{for all } x$$

implies that $\lim_{n\to\infty} R_n(x) = 0$ in all three cases above. This gives the following Taylor series:

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots ,$$

$$\cos x = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n}}{(2n)!} = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots ,$$

$$\sin x = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots .$$

8 VECTOR FUNCTIONS - FUNCTIONS OF SEV-ERAL VARIABLES

Addition and scalar multiplication of n-tuples are defined by

$$(x_1, \ldots, x_n) + (y_1, \ldots, y_n) = (x_1 + y_1, \ldots, x_n + y_n)$$

and

$$a(x_1,\ldots,x_n) = (ax_1,\ldots,ax_n)$$
 for $a \in \mathbb{R}$.

The length or norm of a vector x in \mathbb{R}^n is defined by

$$|x| = ||x|| = \left\{\sum_{i=1}^{n} x_i^2\right\}^{\frac{1}{2}}.$$

The distance between two vectors x and y is defined by

$$|x - y| = ||x - y|| = \left\{\sum_{i=1}^{n} (x_i - y_i)^2\right\}^{\frac{1}{2}}.$$

The inner (scalar) product of x and y is defined by

$$(x,y) = \sum_{i=1}^{n} x_i y_i.$$

We have:

Theorem 1 For $x, y, z \in \mathbb{R}^n$ there holds:

- (i) $(x, x) = |x|^2$,
- (ii) $|(x,y)| \le |x| \cdot |y|$ (Cauchy Schwarz inequality),
- (*iii*) $|x+y| \le |x|+|y|$
- (iv) $|x y| \le |x z| + |z y|$ ((iii) and (iv) are called triangle inequalities)

DEFINITION Let S and T be given sets. A function $f : S \to T$ consists of two sets S and T together with a "rule" that assigns to each $x \in S$ a specific element of T, denoted by f(x). One often writes $x \mapsto f(x)$ to denote that x is mapped to the element f(x).

For a function $f: S \to T$, the set S is called the domain of F. The range, or image, of f is the subset of T defined by $f(S) = \{f(x) \in T; x \in S\}$.

If $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$, we write

$$f(x_1, \ldots, x_n) = (f_1(x_1, \ldots, x_n), \ldots, f_m(x_1, \ldots, x_n))$$

The f_i are called coordinate functions, or components of f.

Composite functions If two functions f and g are so related that the range space of f is the same as the domain space of g, we may form the composite function $g \circ f$ by first applying f and then g. Thus

$$g \circ f(x) = g(f(x))$$

for every vector x in the domain of f.

The operation of addition and multiplication of vector functions

Let f and g be functions with the same domain and having the same range space. Then the function f + g is the sum of f and g defined by

$$(f+g)(x) = f(x) + g(x)$$

for all x in the domain of both f and g.

Similarly, if $r \in \mathbb{R}$, then rf is the numerical multiple of f by r and is defined by $rf(x) = r \cdot f(x)$.

LIMITS AND CONTINUITY OF VECTOR FUNCTIONS

Let $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$. We use $|x-y| = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$, $x = (x_1, \dots, x_n)$, $y = (y_1, \dots, y_n)$. **DEFINITION** Let $\Omega \subset \mathbb{R}^n$. Then *a* is a **limit point** of Ω if, for every $\varepsilon > 0$, there exists a point $y \in \Omega$ such that $0 < |a - y| < \varepsilon$.

In other words, the definition says that a is a limit point (or accumulation point) of Ω if there are points in Ω other than a that are contained in a ball of arbitrarily small radius with centre at a. We come now to the definition of a limit for a function $f: \Omega \to \mathbb{R}^m, \Omega \subset \mathbb{R}^n$.

DEFINITION Let $y_0 \in \mathbb{R}^m$, and let $x_0 \in \mathbb{R}^n$ be a limit point of Ω . Then y_0 is the limit of f at x_0 if, for every $\varepsilon > 0$, there is a $\delta > 0$ such that $|f(x) - y_0| < \varepsilon$ whenever x satisfies $0 < |x - x_0| < \delta$ and $x \in \Omega$. (We write $\lim_{x \to x_0} f(x) = y_0$)

Less formally, the definition says that for $x \neq x_0$, f(x) can be made arbitrarily close to y_0 by choosing x sufficiently close to x_0 .

Geometrically, the idea is this: given any ball $B(y_0, \varepsilon)$ in \mathbb{R}^m , there exists a ball $B(x_0, \delta) \subset \mathbb{R}^n$ whose intersection with Ω (the domain of f), except possibly for x_0 itself, is sent by f into $B(y_0, \varepsilon)$.

Theorem 2 Let $f: \Omega \to \mathbb{R}^m$, $\Omega \subset \mathbb{R}^n$ and let x^0 be a limit point of Ω . Then $\lim_{x \to x^0} f(x) = y^0$ if and only if $\lim_{x \to x^0} f_i(x) = y_i^0$, i = 1, ..., m.

DEFINITION A function f is **continuous** at x_0 if x_0 is in the domain of f and $\lim_{x \to x_0} f(x) = f(x_0)$.

At a nonlimit or isolated point of the domain, we cannot ask for a limit; instead we simply define f to be automatically continuous at such a point.

Theorem 3 A vector function is continuous at a point x_0 if and only if its coordinate functions are continuous there.

Theorem 4 Every linear function $L : \mathbb{R}^n \to \mathbb{R}^m$ is continuous on \mathbb{R}^n , and for such an L there is a number k such that

$$|L(x)| \le k|x|$$
 for every $x \in \mathbb{R}^n$.

The continuity of many functions can be deduced from repeated applications of the following theorem:

Theorem 5

- (1) The functions $P_k : \mathbb{R}^n \to \mathbb{R}$, where $P_k(x) = x_k$, (i.e. $P_k : (x_1, \ldots, x_n) \mapsto x_k$) are continuous for $k = 1, \ldots, n$.
- (2) The functions $S : \mathbb{R}^2 \to \mathbb{R}$ and $M : \mathbb{R}^2 \to \mathbb{R}$, defined by S(x,y) = x + y and M(x,y) = xy are continuous.
- (3) If $f : \mathbb{R}^n \to \mathbb{R}^m$ and $g : \mathbb{R}^m \to \mathbb{R}^p$ are continuous, then the composition $g \circ f$ given by $g \circ f(x) = g(f(x))$ is continuous wherever it is defined.

9 DIFFERENTIABILITY OF VECTOR FUNCTIONS

DEFINITION Let $\Omega \subset \mathbb{R}^n$. A point $x_0 \in \Omega$ is an interior point of a set S if there exists a positive number δ such that $\{x : |x - x_0| < \delta\} \subset \Omega$ (equivalently $B(x_0, \delta) \subset \Omega$) A subset of \mathbb{R}^n , all of whose points are interior, is called **o**pen.

Many of the techniques of calculus have as their foundation the idea of approximating a vector function by a linear function or by an affine function. Recall that a function $A : \mathbb{R}^n \to \mathbb{R}^m$ is affine if there exists a linear function $L : \mathbb{R}^n \to \mathbb{R}^m$ and a vector $y_0 \in \mathbb{R}^m$ such that

 $A(x) = L(x) + y_0$ for every $x \in \mathbb{R}^n$.

EXAMPLE Consider a point $y_0 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ and a linear function $L : \mathbb{R}^3 \to \mathbb{R}^2$ given by

$$y = L(x) = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 4 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix},$$

equivalently,

$$y_1 = x_1 + 2x_2 + x_3$$

$$y_2 = x_1 + 4x_2 + 5x_3.$$

The affine function $A(x) = L(x) + y_0$ is defined by the equations

$$y_1 = x_1 + 2x_2 + x_3 + 1$$

$$y_2 = 3x_1 + 4x_2 + 5x_3 + 3.$$

We shall now study the possibility of approximating an arbitrary vector function $f : \Omega \to \mathbb{R}^m$, with $\Omega \subseteq \mathbb{R}^n$, near a point x_0 of Ω by an affine function A.

We begin by requiring that $f(x_0) = A(x_0)$. Since $A(x) = L(x) + y_0$, where L is linear, we obtain $f(x_0) = L(x_0) + y_0$ and so

(7.1)
$$A(x) = L(x - x_0) + f(x_0).$$

A natural requirement is that

(7.2)
$$\lim_{x \to x_0} (f(x) - A(x)) = 0$$

We observe that from (7.1) we have

$$f(x) - A(x) = f(x) - f(x_0) - L(x - x_0).$$

Since L is continuous, (7.2) says that

$$0 = \lim_{x \to x_0} (f(x) - A(x)) = \lim_{x \to x_0} (f(x) - f(x_0)),$$

which is precisely the statement that f is continuous at x_0 . This is significant, but it says nothing about L. Thus, in order for our notion of approximation to distinguish one affine function from another or to measure how well A approximates f, some additional requirement is necessary. We require that f(x) - A(x) approaches 0 faster than x approaches x_0 . That is, we demand that

$$\lim_{x \to x_0} \frac{f(x) - f(x_0) - L(x - x_0)}{|x - x_0|} = 0.$$

Equivalently, we can ask that f be representable in the form

$$f(x) = f(x_0) + L(x - x_0) + |x - x_0|z(x - x_0),$$

where z(y) is some function that tends to 0 as y tends to 0.

DEFINITION A function $f: D \subset \mathbb{R}^n \to \mathbb{R}^m$ is said to be **differentiable** at x_0 , if

- (1) x_0 is an interior point of the domain D of f,
- (2) there is an affine function that approximates f near x_0 . That is, there exists a linear function $L : \mathbb{R}^n \to \mathbb{R}^m$ such that

$$\lim_{x \to x_0} \frac{f(x) - f(x_0) - L(x - x_0)}{|x - x_0|} = 0.$$

The linear function L is called the *differential* of f at x_0 .

The function f is said to be differentiable if it is differentiable at every point of its domain.

If n = m = 1, an affine function has the form ax+b. Hence $f : \mathbb{R} \to \mathbb{R}$ that is differentiable at x_0 can be approximated near x_0 by a function A(x) = ax+b. Since $f(x_0) = A(x_0) = ax_0+b$, we obtain $b = f(x_0) - ax_0$ and

$$A(x) = ax + b = a(x - x_0) + f(x_0).$$

The linear part of A, denoted earlier by L, is L(x) = ax. The condition (2) of the definition becomes

$$\lim_{x \to x_0} \frac{f(x) - f(x_0) - a(x - x_0)}{|x - x_0|} = 0.$$

This is equivalent to

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = a.$$

The number a is commonly denoted by $f'(x_0)$ and it is the derivative of f at x_0 . The affine function A is therefore given by

$$A(x) = f(x_0) + f'(x_0)(x - x_0)$$

Its graph is the tangent line to the graph of f at x_0 .

General case: $n, m \ge 1$. A linear function $L : \mathbb{R}^n \to \mathbb{R}^m$ must be representable by an m- by - n matrix, that is, L(x) = Ax. We shall show that the matrix A of L satisfying (1) and (2) of the definition can be computed in terms of partial derivatives of f. To find the matrix A, we consider the standard basis (e_1, \ldots, e_n) of \mathbb{R}^n . If x_0 is an interior point of the domain of f, the vectors

$$x^j = x_0 + te_j, \quad j = 1, \dots, m,$$

are all in the domain of f for sufficiently small t. By condition (2) of the definition we have

$$\lim_{t \to 0} \frac{f(x^j) - f(x_0) - L(te_j)}{t} = 0.$$

Since L is linear, we deduce from this

$$\lim_{t \to 0} \frac{f(x^j) - f(x_0)}{t} = L(e_j).$$

 $L(e_j)$ is the jth column of the matrix A of L. On the other hand the vector x^j differs from x_0 only in the *jth* coordinate, that is,

$$\lim_{t \to 0} \frac{f(x^j) - f(x_0)}{t} = \begin{pmatrix} \frac{\partial f_1(x_0)}{\partial x^j} \\ \cdot \\ \cdot \\ \frac{\partial f_m(x_0)}{\partial x^j} \end{pmatrix}$$

and the entire matrix of L has the form

$$\begin{bmatrix} \frac{\partial f_1(x_0)}{\partial x^1}, & \frac{\partial f_1(x_0)}{\partial x^2}, & \dots, & \frac{\partial f_1(x_0)}{\partial x^n} \\ \frac{\partial f_2(x_0)}{\partial x^1}, & \frac{\partial f_2(x_0)}{\partial x^2}, & \dots, & \frac{\partial f_2(x_0)}{\partial x^n} \\ \dots & & \\ \frac{\partial f_m(x_0)}{\partial x^1}, & \frac{\partial f_m(x_0)}{\partial x^2}, & \dots, & \frac{\partial f_m(x_0)}{\partial x^n} \end{bmatrix}, \quad a_{ij} = \frac{\partial f_i(x_0)}{\partial x^j}.$$

This matrix is called the **Jacobian matrix** or the derivative of f at x_0 , and it is denoted by $f'(x_0)$. It follows that L is uniquely determined by the partial derivatives $\frac{\partial f_i(x_0)}{\partial x^j}$.

The differential of L at x_0 is also denoted by $d_{x_0}f$ or $D_{x_0}f$.

We summarize what we have just proved as follows.

Theorem 1 If the function $f : \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at x_0 , then the differential $d_{x_0}f$ is uniquely determined, and its matrix is the Jacobian matrix of f. That is, for every vector y in \mathbb{R}^n we have

$$D_{x_0}f(y) = f'(x_0)y.$$

We interpret $y = f(x_0) + f'(x_0)(x - x_0)$ as the equation of the tangent plane to the graph of f at $(x_0, f(x_0))$.

EXAMPLE The function

$$\left(\begin{array}{c}x^2 + e^y\\x + y\sin z\end{array}\right)$$

has coordinate functions $f_1(x, y, z) = x^2 + e^y$ and $f_2(x, y, z) = x + y \sin z$. The Jacobian matrix of f at (x, y, z) is

$$f'(x,y,z) = \begin{bmatrix} \frac{\partial f_1}{\partial x}, & \frac{\partial f_1}{\partial y}, & \frac{\partial f_1}{\partial z} \\ \frac{\partial f_2}{\partial x}, & \frac{\partial f_2}{\partial y}, & \frac{\partial f_2}{\partial z} \end{bmatrix} = \begin{bmatrix} 2x, & e^y, & 0 \\ 1, & \sin z, & y \cos z \end{bmatrix}.$$

The differential of f at $(1, 1, \pi)$ is

$$d_{(1,1,\pi)}f(x,y,z) = \begin{bmatrix} 2 & e & 0 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2x + ey \\ x - z \end{bmatrix}.$$

The affine mapping that approximates f near $(1, 1, \pi)$ is

$$\begin{aligned} A(x,y,z) &= \begin{bmatrix} 2 & e & 0 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} x - 1 \\ y - 1 \\ z - \pi \end{bmatrix} + f(1,1,\pi) \\ &= \begin{bmatrix} 1 + e \\ 1 \end{bmatrix} + \begin{bmatrix} 2 & e & 0 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} x - 1 \\ y - 1 \\ z - \pi \end{bmatrix} \\ &= \begin{bmatrix} 1 + e + 2(x - 1) + e(y - 1) \\ 1 + (x - 1) - (z - \pi) \end{bmatrix} = \begin{bmatrix} 2x + ey - 1 \\ x - z + \pi \end{bmatrix} \end{aligned}$$

Remark: If $f : \mathbb{R}^n \to \mathbb{R}$, then the Jacobian matrix is reduced to a gradient

$$f'(x) = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right).$$

The notation $\nabla f(x)$ is also used. In this case the differential of f at x_0 is given by

$$L(x) = d_{x_0}f(x) = x_1\frac{\partial f(x_0)}{\partial x_1} + x_2\frac{\partial f(x_0)}{\partial x_2} + \dots + x_n\frac{\partial f(x_0)}{\partial x_n}.$$

EXAMPLE Let $f(x) = \sum_{i=1}^{n} x_i^2 = |x|^2$. Show that f is differentiable at every point $x_0 \in \mathbb{R}^n$.

If f is differentiable at x_0 , then the differential of f at x_0 must be given by

$$L(x) = d_{x_0} f(x) = \sum_{i=1}^{n} 2x_i^0 x_i = 2x_0 x.$$

Then

$$\frac{f(x) - f(x_0) - L(x - x_0)}{|x - x_0|} = \frac{|x|^2 - |x_0|^2 - 2x_0(x - x_0)}{|x - x_0|}$$

= $\frac{|x|^2 - |x_0|^2 - 2x_0x + 2|x_0|^2}{|x - x_0|} = \frac{|x|^2 + |x_0|^2 - 2x_0x}{|x - x_0|} = \frac{|x - x_0|^2}{|x - x_0|}$
= $|x - x_0| \to 0$ as $x \to x_0$.

Therefore f is differentiable at each point $x_0 \in \mathbb{R}^n$.

How one can tell whether or not a vector function is differentiable? We only know that if f is differentiable then the differential is represented by the Jacobian matrix.

Theorem 2 If the domain of $f : \mathbb{R}^n \to \mathbb{R}^m$ is an open set $D \subset \mathbb{R}^n$ on which all partial derivatives $\frac{\partial f_i}{\partial x_j}$ are continuous, then f is differentiable at every point of D. For example

$$f(x_1, x_2, x_3) = \left(x_1^2 + x_1 x_2 x_3, e^{x_1 + x_2 + x_3}, \sin(x_1 + x_2 + x_3)\right)$$

is differentiable at every point of \mathbb{R}^3 .

It follows from the definition of a differentiable vector function that:

Theorem 3 If f is differentiable at x_0 , then f is continuous at x_0 .

The converse is not true.

EXAMPLE Consider the function

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{for } (x,y) \neq (0,0) \\ 0 & \text{for } (x,y) = (0,0). \end{cases}$$

Since $\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}} = 0 = f(0,0)$, f is continuous at (0,0). If f were differentiable at (0,0), then

$$d_{(0,0)}f(x,y) = (f_x(0,0), f_y(0,0)).$$

Since

$$f_x(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = 0$$

and

$$f_y(0,0) = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = 0,$$

 $d_{(0,0)}f(x,y) = 0$ for all $(x,y) \in \mathbb{R}^2$. On the other hand

$$\lim_{(x,y)\to(0,0)}\frac{f(x,y)-f(0,0)-d_{(0,0)}f(x,y)}{\sqrt{x^2+y^2}} = \lim_{(x,y)\to(0,0)}\frac{xy}{x^2+y^2} = 0,$$

which is impossible as the function $\frac{xy}{x^2+y^2}$ does not have a limit at the origin.

Notice that f has partial derivatives at (0,0): $\frac{\partial f(0,0)}{\partial x} = 0$ and $\frac{\partial f(0,0)}{\partial y} = 0$. This means that the gradient (the Jacobian matrix) exists. However, this does not guarantee the differentiability of f at (0,0).

Let $f: \mathbb{R}^n \to \mathbb{R}, x_0 \in \mathbb{R}^n$ and $u \in \mathbb{R}^n$ be a unit vector. This means |u| = 1, where

$$u = (u_1, \dots, u_n), \ |u| = \left(\sum_{i=1}^n u_i^2\right)^{\frac{1}{2}}.$$

DEFINITION The directional derivative of f at x_0 in the direction u, denoted by $\frac{\partial f(x_0)}{\partial u}$ or $D_u f(x_0)$, is defined by

$$\frac{\partial f(x_0)}{\partial u} = \lim_{t \to 0} \frac{f(x_0 + tu) - f(x_0)}{t}.$$

From this definition we see that the directional derivative is the rate of change of f in the direction u.

Theorem 4 If f is differentiable at x, then

$$\frac{\partial f(x)}{\partial u} = f'(x)u$$

for every unit vector in \mathbb{R}^n .

EXAMPLE Let $f(x_1, x_2, x_3) = x_1^2 + x_3^2 + e^{x_2}, u = \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{\sqrt{2}}\right)$. Then

$$\frac{\partial f(1,1,1)}{\partial u} = \frac{\partial f(1,1,1)}{\partial x_1} u_1 + \frac{\partial f(1,1,1)}{\partial x_2} u_2 + \frac{\partial f(1,1,1)}{\partial x_3} u_3$$
$$= 2 \cdot \frac{1}{2} + e \cdot \frac{1}{2} + 2 \cdot \frac{1}{\sqrt{2}} = 1 + \frac{e}{2} + \sqrt{2}.$$

EXAMPLE Show that the existence of all directional derivatives at a point x does not imply the differentiability at this point. Let

$$f(x,y) = \begin{cases} \frac{x|y|}{\sqrt{x^2 + y^2}} & \text{for } (x,y) \neq (0,0), \\ 0 & \text{for } (x,y) = (0,0). \end{cases}$$

We know that f is not differentiable at (0,0). However, $\frac{\partial f(0,0)}{\partial u}$ exists at each direction $u = (u_1, u_2)$. Indeed,

$$\frac{\partial f(0,0)}{\partial u} = \lim_{t \to 0} \frac{tu_1 |tu_2|}{t\sqrt{t^2 u_1^2 + t^2 u_2^2}} = \lim_{t \to 0} \frac{t|t|u_1|u_2|}{t|t|} = u_1 |u_2|.$$

We have that $\frac{\partial f(x_0)}{\partial u}$ is the slope of the tangent line at $(x_0, f(x_0))$ to the curve formed by the intersection of the graph of f with the plane that contains $(x_0 + tu)$ and x_0 , and is parallel to the z-axis.

We always have

$$\frac{\partial f(x_0)}{\partial u} = \nabla f(x_0)u \le |\nabla f(x_0)||u| = |\nabla f(x_0)|.$$

For $u = \frac{\nabla f(x_0)}{|\nabla f(x_0)|}$, we have

$$\frac{\partial f(x_0)}{\partial u} = \frac{\nabla f(x_0) \cdot \nabla f(x_0)}{|\nabla f(x_0)|} = \frac{|\nabla f(x_0)|^2}{|\nabla f(x_0)|} = |\nabla f(x_0)|.$$

This shows that the rate of change of $\frac{\partial f(x_0)}{\partial u}$ is never greater than $|\nabla f(x_0)|$ and is equal to it in the direction of the gradient.

CHAIN RULE

As in the one-dimensional case, the chain rule is a rule for differentiating composite functions.

Theorem 5 Let g be a continuously differentiable function on an open set $\Omega \subset \mathbb{R}^n$ and let f be defined and differentiable for a < t < b, taking its values in Ω . Then the composite function F(t) = g(f(t)) is differentiable for a < t < b and

$$F'(t) = \nabla g(f(t)) \cdot f'(t).$$

EXAMPLE Let $g(x, y) = x^2 y + e^{x+y}$ for $(x, y) \in \mathbb{R}^2$ and let $f(t) = (t, t^2)$. Then

$$f'(t) = (1, 2t), \quad \nabla g(x, y) = (2xy + e^{x+y}, x^2 + e^{x+y})$$

and

$$F'(t) = (2t^3 + e^{t+t^2}, t^2 + e^{t+t^2}) \cdot (1, 2t)$$

= $2t^3 + e^{t+t^2} + 2t^3 + 2te^{t+t^2}$
= $4t^3 + e^{t+t^2} + 2te^{t+t^2}$.

The following theorem gives the extension to any dimension for the domain and range of g and f.

Theorem 6 (the Chain Rule) Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be continuously differentiable at x and let $g : \mathbb{R}^m \to \mathbb{R}^p$ be continuously differentiable at f(x). If $g \circ f$ is defined on an open set containing x, then $g \circ f$ is continuously differentiable at x, and

$$(g \circ f)'(x) = g'(f(x))f'(x).$$

Proof The matrices here have the form

$$\begin{bmatrix} \frac{\partial g_1(f(x))}{\partial y_1} & , \dots, & \frac{\partial g_1(f(x))}{\partial y_m} \\ & \dots & \\ \frac{\partial g_p(f(x))}{\partial y_1} & , \dots, & \frac{\partial g_p(f(x))}{\partial y_m} \end{bmatrix} \text{ and } \begin{bmatrix} \frac{\partial f_1(x)}{\partial x_1} & , \dots, & \frac{\partial f_1(x)}{\partial x_n} \\ & \dots & \\ \frac{\partial f_m(x)}{\partial x_1} & , \dots, & \frac{\partial f_m(x)}{\partial x_n} \end{bmatrix}$$

The product of the matrices has as its ij th entry the sum of products

$$\sum_{k=1}^{m} \frac{\partial g_i(f(x))}{\partial y_k} \frac{\partial f_k(x)}{\partial x_j}.$$

This expression is the scalar product of two vectors $\nabla g_i(f(x))$ and $\frac{\partial f(x)}{\partial x_j}$. It follows from Theorem 5 that

$$\nabla g_i(f(x)) \frac{\partial f(x)}{\partial x_j} = \frac{\partial (g_i \circ f)(x)}{\partial x_j}$$

because we differentiate with respect to the single variable x_i .

EXAMPLES

(1) Let $f(x,y) = (x^2 + y^2, x^2 - y^2)$ and g(u,v) = (uv, u + v). Find $(g \circ f)'(2,1)$. First we compute g' and f'

$$g'(u,v) = \begin{bmatrix} v, & u \\ 1, & 1 \end{bmatrix}, \quad f'(x,y) = \begin{bmatrix} 2x, & 2y \\ 2x, & -2y \end{bmatrix}.$$

To find $(g \circ f)'(2, 1)$, we note that f(2, 1) = (5, 3),

$$g'(5,3) = \begin{bmatrix} 3, 5\\ 1, 1 \end{bmatrix} \quad f'(2,1) = \begin{bmatrix} 4, 2\\ 4, -2 \end{bmatrix}$$

Then the product of the matrices g'(5,3) and f'(2,1) gives

$$(g \circ f)(2,1) = \begin{bmatrix} 3, 5\\ 1, 1 \end{bmatrix} \cdot \begin{bmatrix} 4, 2\\ 4, -2 \end{bmatrix} = \begin{bmatrix} 12+20, 6-10\\ 4+4, 2-2 \end{bmatrix} = \begin{bmatrix} 32, -4\\ 8, 0 \end{bmatrix}.$$

(2) Let $w = g(x, y, z) : \mathbb{R}^3 \to \mathbb{R}$ and

$$(x, y, z) = f(s, t) = (f_1(s, t), f_2(s, t), f_3(s, t)) : \mathbb{R}^2 \to \mathbb{R}^3.$$

Compute the partial derivatives $\frac{\partial w}{\partial s}$ and $\frac{\partial w}{\partial t}$ of the composite function $w = g(f_1(s,t), f_2(s,t), f_3(s,t)).$

By the chain rule we have

$$\left(\frac{\partial w}{\partial s}, \frac{\partial w}{\partial t}\right) = \left(\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z}\right) \cdot \left[\begin{array}{cc} \frac{\partial x}{\partial s}, & \frac{\partial x}{\partial t}\\ \frac{\partial y}{\partial s}, & \frac{\partial y}{\partial t}\\ \frac{\partial z}{\partial s}, & \frac{\partial z}{\partial t}\end{array}\right].$$

Matrix multiplication yields

$$\begin{array}{lll} \frac{\partial w}{\partial s} & = & \frac{\partial g}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial g}{\partial y}\frac{\partial y}{\partial s} + \frac{\partial g}{\partial z}\frac{\partial z}{\partial s} \\ \frac{\partial w}{\partial t} & = & \frac{\partial g}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial g}{\partial y}\frac{\partial y}{\partial t} + \frac{\partial g}{\partial z}\frac{\partial z}{\partial t} \end{array}$$

(3) Let $g: \mathbb{R}^3 \to \mathbb{R}^3$, $f: \mathbb{R}^2 \to \mathbb{R}^3$. We introduce notation

$$w = (w_1, w_2, w_3) = (g_1(x, y, z), g_2(x, y, z), g_3(x, y, z)),$$
$$(x, y, z) = (f_1(s, t), f_2(s, t), f_3(s, t)).$$

Compute $\frac{\partial w_1}{\partial s}$, $\frac{\partial w_1}{\partial t}$, $\frac{\partial w_2}{\partial s}$, $\frac{\partial w_2}{\partial t}$, $\frac{\partial w_3}{\partial s}$ and $\frac{\partial w_3}{\partial t}$. We have

$$\begin{bmatrix} \frac{\partial w_1}{\partial s}, & \frac{\partial w_1}{\partial t} \\ \frac{\partial w_2}{\partial s}, & \frac{\partial w_2}{\partial t} \\ \frac{\partial w_3}{\partial s}, & \frac{\partial w_3}{\partial t} \end{bmatrix} = \begin{bmatrix} \frac{\partial g_1}{\partial x}, & \frac{\partial g_1}{\partial y}, & \frac{\partial g_1}{\partial z} \\ \frac{\partial g_2}{\partial x}, & \frac{\partial g_2}{\partial y}, & \frac{\partial g_2}{\partial z} \\ \frac{\partial g_3}{\partial x}, & \frac{\partial g_3}{\partial y}, & \frac{\partial g_3}{\partial z} \end{bmatrix} \cdot \begin{bmatrix} \frac{\partial f_1}{\partial s}, & \frac{\partial f_1}{\partial t} \\ \frac{\partial f_2}{\partial s}, & \frac{\partial f_2}{\partial t} \\ \frac{\partial f_3}{\partial s}, & \frac{\partial f_3}{\partial t} \end{bmatrix}.$$

Matrix multiplication yields, for j = 1, 2, 3:

$$\begin{array}{lll} \frac{\partial w_j}{\partial s} & = & \frac{\partial g_j}{\partial x} \frac{\partial f_1}{\partial s} + \frac{\partial g_j}{\partial y} \frac{\partial f_2}{\partial s} + \frac{\partial g_j}{\partial z} \frac{\partial f_3}{\partial s}, \\ \frac{\partial w_j}{\partial t} & = & \frac{\partial g_j}{\partial x} \frac{\partial f_1}{\partial t} + \frac{\partial g_j}{\partial y} \frac{\partial f_2}{\partial t} + \frac{\partial g_j}{\partial z} \frac{\partial f_3}{\partial t}. \end{array}$$

10 THE IMPLICIT AND INVERSE FUNCTION THE-OREMS

THE IMPLICIT FUNCTION THEOREM

An equation in two variables x and y may have one or more solutions for y in terms of x or for x in terms of y. We say that these solutions are functions implicitly defined by the equation.

For example the equation of the unit circle , $x^2 + y^2 = 1$, implicitly defines four function (among others):

$$\begin{array}{rcl} y &=& \sqrt{1-x^2} \ \mbox{for} \ x \in [-1,1], \\ y &=& -\sqrt{1-x^2} \ \mbox{for} \ x \in [-1,1], \\ x &=& \sqrt{1-y^2} \ \mbox{for} \ y \in [-1,1], \\ x &=& -\sqrt{1-y^2} \ \mbox{for} \ y \in [-1,1]. \end{array}$$

In general case, we consider a function $F : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$, and study the relation F(x, y) = 0, or, written out,

$$F_1(x_1, \dots, x_n, y_1, \dots, y_m) = 0$$
$$\dots$$
$$F_m(x_1, \dots, x_n, y_1, \dots, y_m) = 0.$$

The goal is to solve for the *m* unknowns y_1, \ldots, y_m from the *m* equations in terms of x_1, \ldots, x_n .

Theorem 1 (The Implicit Function Theorem) Let $\Omega \subset \mathbb{R}^n \times \mathbb{R}^m$ be an open set, and let $F : \Omega \to \mathbb{R}^m$ be function of class C^1 . Suppose $(x_0, y_0) \in \Omega$ and $F(x_0, y_0) = 0$. Assume that

$$\det \begin{bmatrix} \frac{\partial F_1}{\partial y_1}, & \dots, & \frac{\partial F_1}{\partial y_m} \\ & \dots & \\ \frac{\partial F_m}{\partial y_1}, & \dots, & \frac{\partial F_m}{\partial y_m} \end{bmatrix} \neq 0 \text{ evaluated at } (x_0, y_0),$$

where $F = (F_1, \ldots, F_m)$. Then there are open sets $U \subset \mathbb{R}^n$ and $V \subset \mathbb{R}^m$, with $x_0 \in U$ and $y_0 \in V$, and a unique function $f : U \to V$ such that

$$F(x, f(x)) = 0$$

for all $x \in U$. Furthermore, f is of class C^1 .

THE INVERSE FUNCTION THEOREM

If a function f is thought of as sending vectors x into vectors y in the range of f, then it is natural to start with y and ask what vector or vectors x are sent by f into y.

More particularly, we may ask if there is a function that reverses the action of f. If there is a function f^{-1} with the property

$$f^{-1}(y) = x$$
 if and only if $f(x) = y$,

then f^{-1} is called the inverse function of f. It follows that the domain of f^{-1} is the range of f and that the range of f^{-1} is the domain of f.

Given a function $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^n$, where $\Omega \subseteq \mathbb{R}^n$, one may ask:

- (1) Does it have an inverse?
- (2) If it does, what are its properties?

In general it is not easy to answer these questions just by looking at the function. However, in certain circumstances we get a useful result.

Theorem 2 (The inverse function theorem) Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be continuously differentiable function such that $f'(x_0)$ has an inverse. Then there is an open set Ω containing x_0 such that f, when restricted to Ω , has a continuously differentiable inverse. The image set $f(\Omega)$ is open. In addition,

$$\left[f^{-1}(y_0)\right]' = \left[f'(x_0)\right]^{-1}$$

where $y_0 = f(x_0)$. That is, the differential of the inverse function at y_0 is the inverse of the differential of f at x_0 .