
Mathematical Analysis: Supplementary notes
I 

0 FIELDS

The real numbers, R, form a field. This means that we have a set, here R, and two binary 
operations

addition, + : R × R → R, and multiplication, · : R × R → R,

for which the axioms F1-F7 below hold true. Note that multiplication can also be denoted 
by ×, or simply by juxtaposition.

(F1) Associativity of addition: (r + s) + t = (r + s) + t for all r, s, t ∈ R;

(F2)(i) Existence of additive identity: There exists 0 ∈ R such that

r + 0 = r for all r ∈ R;

(F2)(ii) Existence of additive inverse: Given r ∈ R there exists s ∈ R such that

r + s = 0 (we write s = −r);

(F3) Commutativity of addition: r + s = s+ r for all r, s ∈ R;

(F4) Associativity of multiplication: (rs)t = r(st) for all r, s, t ∈ R;

(F5)(i) Existence of multiplicative identity: There exists 1 ∈ R with 1 6= 0 such that

r · 1 = r for all r ∈ R;

(F5)(ii) Existence of multiplicative inverse: Given r ∈ R \ {0} there exists t ∈ R such
that

rt = 1 (we write t = r−1);

(F6) Commutativity of multiplication: rs = sr for all r, s ∈ R;

(F7) Distributive Law: r(s+ t) = rs+ rt for all r, s, t ∈ R.
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1 SEQUENCES

DEFINITION Let f : N→ R (or N0 → R). Then f is called a sequence.

If f(n) = an, then an is called the nth term. It is customary to write such a sequence as
{an} (or {a1, a2, . . .}).

DEFINITION A sequence {an} is said to converge to a limit a if for every ε > 0 there
is an integer N such that |an − a| < ε whenever n ≥ N . (The number N may depend on
ε; in particular, smaller ε may (and often does) require larger N). In this case we write
lim
n→∞

an = a or an → a as n→∞.

A sequence that does not converge is said to diverge. This can be further qualified (e.g. “the
sequence diverges to +∞”).

LEAST UPPER BOUND AND GREATEST LOWER BOUND

DEFINITION Let E ⊂ R, E 6= ∅. A number b ∈ R is called an upper (resp. lower) bound
for E if x ≤ b (resp. b ≤ x) for every x ∈ E. In the case that such a b exists, we say that E
is bounded above (resp. below).
If E has both an upper bound and a lower bound, then we say that E is bounded.

DEFINITION By a supremum (or least upper bound) of E we mean a number s ∈ R
such that

(i) s is an upper bound for E and

(ii) if b is an upper bound for E, then s ≤ b.

If E has a supremum s, we write
s = supE.

(The notation s = lub E is used in some textbooks)

The infimum (or greatest lower bound) of E is defined similarly. It is a lower bound for E
which is larger than every other lower bound for E. We write inf E (or glb E).

Axiom 5 (Supremum principle) Every nonempty set of real number that is bounded
above has a supremum in R.
Every nonempty set of real numbers that is bounded below has an infimum in R.

MONOTONE SEQUENCES

DEFINITION A sequence {an} is said to be :

nondecreasing if an ≤ an+1;

nonincreasing if an ≥ an+1;

strictly increasing if an < an+1;
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strictly decreasing if an > an+1,

for every n ∈ N. All such sequences are said to be monotone, in the latter two cases
strictly monotone.

EXAMPLE The number e.
For every n ∈ N, let

an =
(
1 +

1

n

)n
, bn =

(
1 +

1

n

)n+1
.

Then

(i) {an} is strictly increasing,

(ii) {bn} is strictly decreasing,

(iii) lim
n→∞

an = lim
n→∞

bn.

The common limit of these two sequences is denoted by e. There holds 2 < e < 4.

LIMSUP and LIMINF

Even though a sequence need not have a limit, there are two important real numbers which
can be associated with every sequence of real numbers.

DEFINITION Let {an} ⊂ R. For every k ∈ N define

yk = inf{an; n ∈ N, n ≥ k}

zk = sup{an; n ∈ N, n ≥ k}.

We have
y1 ≤ y2 ≤ y3 ≤ . . . and z1 ≥ z2 ≥ z3 ≥ . . .

Let
y = lim

k→∞
yk = sup{yk; k ∈ N}

z = lim
k→∞

zk = inf{zk; k ∈ N}.

The numbers y and z are called the limit inferior of {an} and the limit superior of {an},
respectively. Note: y and/or z may be +∞ or −∞.

We write
y = lim inf

n→∞
an = sup

k
inf{an; n ∈ N, n ≥ k},

z = lim sup
n→∞

an = inf
k

sup{an; n ∈ N, n ≥ k}.

A useful tool in the study of sequences is the notion of a cluster point.

DEFINITION. A point x is called a cluster point of the sequence {xn} if for every ε > 0
there are infinitely many values of n with |xn − x| < ε.
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Let {xn} be a sequence in R that is bounded above. The limit superior of xn (lim sup
n→∞

xn)

is the greatest cluster point of {xn}; equivalently, it is the supremum of the set of cluster
points. If the sequence is not bounded above, lim sup

n→∞
xn =∞.

Similarly, if {xn} is bounded below, the limit inferior of xn (lim inf
n→∞

xn) is the infimum of the

set of cluster points. If {xn} is not bounded below, lim inf
n→∞

xn = −∞.

CAUCHY SEQUENCES

DEFINITION A sequence {xn} of real numbers is called a Cauchy sequence if for every
number ε > 0, there is an integer N (depending on ε) such that |xn − xm| < ε whenever
n ≥ N and m ≥ N .

2 SERIES

DEFINITION Let {an} ⊂ R and define

sn =
n∑
k=1

ak = a1 + a2 + . . .+ an

for each n ∈ N.
The symbol

∑∞
n=1 an or a1 + a2 + . . . is called an infinite series having nth term an and

nth partial sum sn.

DEFINITION A series
∑∞

n=1 an is said to converge to a ∈ R if the sequence of partial
sums sn =

∑n
k=1 ak converges to a, and if so we write

a =
∞∑
n=1

an.

Otherwise, we say that
∑∞

n=1 an diverges.

Cauchy criterion Let {an} ⊂ R. A series
∑∞

n=1 an converges if and only if for every ε > 0
there exists n0 ∈ N such that∣∣∣∣∣

q∑
n=p+1

an

∣∣∣∣∣ < ε whenever q > p ≥ n0.

Geometric series. Let a ∈ R and r ∈ R. Then
∞∑
n=0

arn converges and its sum is a
1−r if

|r| < 1. If a 6= 0 and |r| ≥ 1, then this series diverges.
By the formula for geometric progressions we have (r 6= 1):

sn =
n∑
k=0

ark = a
1− rn+1

1− r
.
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Assuming that |r| < 1, limn→∞ sn = a
1−r . If a 6= 0 and |r| ≥ 1, then |arn| ≥ |a| 6= 0 and this

shows that the series cannot converge.
Comparison test Suppose that 0 ≤ an ≤ bn for all but finitely many n ∈ N.

(1) If
∑

n bn converges, then
∑

n an converges.

(2) If
∑

n an diverges, then
∑

n bn diverges.

ABSOLUTE CONVERGENCE

DEFINITION We say that
∑∞

n=1 an converges absolutely if
∑∞

n=1 |an| converges.

Leibniz’s alternating test Let {an} be a nonincreasing sequence of positive numbers such
that limn→∞ an = 0. Then

∑∞
n=1(−1)nan is convergent.

Root test (Cauchy) Let
∑∞

n=1 an and

ρ = lim sup
n→∞

n
√
|an|.

(i) If ρ < 1, the series converges absolutely,

(ii) If ρ > 1, the series diverges.

(iii) If ρ = 1, then the test is inconclusive.

Ratio test (d’Alembert) Let
∑∞

n=1 an be a series with an 6= 0 for every n.

(i) If lim supn→∞

∣∣∣an+1

an

∣∣∣ < 1, then the series converges absolutely.

(ii) If lim infn→∞

∣∣∣an+1

an

∣∣∣ > 1, then the series diverges.

(iii) If limn→∞

∣∣∣an+1

an

∣∣∣ = 1, then the test is inconclusive.

3 LIMITS AND CONTINUITY

DEFINITION Let X ⊂ R and a ∈ R. We call a a limit point (or accumulation point)
of X if every interval (−δ + a, a + δ), δ > 0, contains at least one point of X other than a

(a need not be in X).
All points of X that are not limit points of X are called isolated points of X.

DEFINITION Let f : X → R, X ⊂ R and let a be a limit point of X. We say that f
converges to the limit ` as x approaches a if for every ε > 0 there is a δ > 0 such that

|f(x)− `| < ε whenever 0 < |x− a| < δ and x ∈ X.

Theorem 1 Let lim
x→a

f(x) = ` and lim
x→a

g(x) = m. Then
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(i) lim
x→a

(f(x)± g(x)) = lim
x→a

f(x)± lim
x→a

g(x) = `±m,

(ii) lim
x→a

αf(x) = α lim
x→a

f(x) = α` for every α ∈ R,

(iii) if m 6= 0, then lim
x→a

f(x)

g(x)
=

limx→a f(x)

limx→a g(x)
=

`

m
,

(iv) lim
x→a

f(x)g(x) = lim
x→a

f(x) · lim
x→a

g(x) = `m.

Theorem 2 (Squeeze principle) Let f : X → R, g : X → R, h : X → R be such that
f(x) ≤ g(x) ≤ h(x) for all x ∈ X. If lim

x→a
f(x) = lim

x→a
h(x) = `, then lim

x→a
g(x) = `.

LIMITS AT INFINITY

DEFINITION Let f : [a,∞)→ R. We say that lim
x→∞

f(x) = ` if and only if for every ε > 0

there exists M > 0 (think of M as needing to be large if ε is small) such that

|f(x)− `| < ε whenever x ≥M.

We say that lim
x→∞

f(x) =∞ if and only if for every N > 0 there exists M > 0 such that

f(x) ≥ N whenever x > M .
In a similar manner we define limits at −∞.

The squeeze principle remains valid for limits at ∞ (−∞).

EXAMPLE Let f(x) = sinx
1+|x| . For every x ∈ R we have

− 1

1 + |x|
≤ sinx

1 + |x|
≤ 1

1 + |x|
.

Since lim
x→∞

1

1 + |x|
= 0, we also have lim

x→∞
f(x) = 0.

CONTINUOUS FUNCTIONS

DEFINITION Let f : (a, b) → R and x0 ∈ (a, b). We say that f is continuous at x0 if
lim
x→x0

f(x) = f(x0).

This means: f is continuous at x0 if for every ε > 0 there exists a δ > 0 such that

|f(x)− f(x0)| < ε whenever |x− x0| < δ.

The function f is continuous on (a, b) if f is continuous at each point of (a, b).

Theorem 3 Let f and g be defined on (a, b) and continuous at the point x0 ∈ (a, b), and
let λ be a constant. Then

(i) λ · f(x) is continuous at x0,

(ii) f(x)± g(x) is continuous at x0,
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(iii) f(x) · g(x) is continuous at x0,

(iv) f(x)
g(x)

is continuous at x0, provided g(x0) 6= 0.

Theorem 4 (composition of functions) Let lim
x→x0

g(x) = ` and let f be continuous at `:

then there holds lim
x→x0

f((g(x)) = f(`).

If g is continuous at x0 and f is continuous at g(x0), then f ◦ g(x) = f(g(x)) is continuous
at x0.

DEFINITION Let I be an interval, f : I → R. We say that f is uniformly continuous on
I if for every ε > 0 there is a δ > 0 such that

x, y ∈ I and |x− y| < δ imply |f(x)− f(y)| < ε.

Theorem 5 Let f : [a, b]→ R be continuous. Then f is uniformly continuous.

PROPERTIES OF CONTINUOUS FUNCTIONS

Intermediate Value Theorem Let λ be a constant and f : [a, b] → R continuous on
[a, b].
If f(a) < λ < f(b) or f(a) > λ > f(b), then there is a c ∈ (a, b) such that f(c) = λ.

DEFINITION We say that a function f attains its minimum (maximum) value on a set
Ω ⊂ R at a ∈ Ω if f(x) ≥ f(a) (f(x) ≤ f(a)) for all x ∈ Ω. We say that a function f has an
extremum at a on Ω if it attains its maximum or its minimum value on Ω at a.

Extreme value theorem A continuous function f on a closed interval [a, b] attains its
maximum and minimum values on [a, b].

4 SEQUENCES AND SERIES OF FUNCTIONS

An important way to construct nontrivial functions is to obtain them as limits of sequences
or series of given functions.

DEFINITION (pointwise convergence) Let X ⊂ R and fn : X → R for each n ∈ N.
The sequence {fn} is said to be pointwise convergent on X if there exists a function f : X →
R such that f(x) = limn→∞ fn(x) for every x ∈ X. In this case, f is called the pointwise
limit on X of the sequence {fn}.

DEFINITION (uniform convergence) The sequence {fn} is said to be uniformly con-
vergent on X if there exists a function f : X → R such that for every ε > 0 there exists an
N ∈ N such that

|fn(x)− f(x)| < ε whenever n ≥ N and x ∈ X.

The number N may depend on ε but not on x.
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Theorem 1 Let fn : [a, b]→ R be continuous for each n ∈ N. If fn → f uniformly on [a, b],
then f is continuous on [a, b].

Theorem 2 (Cauchy condition) Let X ⊂ R and fn : X → R. Then the following two
assertions are equivalent:

(i) {fn} is uniformly convergent,

(ii) for every ε > 0 there exists some N ∈ N such that for every x ∈ X

|fn(x)− fm(x)| < ε whenever n,m ≥ N.

SERIES OF FUNCTIONS
Let fn : X → R, X ⊂ R and

sn(x) = f1(x) + . . .+ fn(x).

DEFINITION If {sn(x)} is pointwise convergent on X to s(x), then we say that the series
∞∑
k=1

fk(x) is pointwise convergent on X and that s is its pointwise sum on X. If {sn(x)}

is uniformly convergent on X to s(x), then we say that the series
∞∑
k=1

fk(x) is uniformly

convergent on X and that s is its uniform sum on X.

Theorem 3 (Weierstrass M -test) Let X ⊂ R and fn : X → R. Suppose that there exists a

sequence {Mn} of nonnegative numbers such that
∞∑
n=1

Mn <∞ and |fn(x)| ≤Mn for x ∈ X

and n ∈ N. Then
∞∑
n=1

fn(x) is uniformly convergent.

Theorem 4 (Abel’s test) Let A ⊂ R and φn : A→ R be a decreasing sequence of functions,
that is, φn+1(x) ≤ φn(x) for every x ∈ A. Suppose that there is a constant M such that

|φn(x)| ≤ M for every x ∈ A and every n. If
∞∑
n=1

fn(x) converges uniformly on A, then so

does
∞∑
n=1

φn(x)fn(x).

Theorem 5 (Dirichlet’s test) Let sn(x) =
n∑
k=1

fk(x) for a sequence fk : A→ R. Assume that

there is a constant M such that |sn(x)| ≤ M for every x ∈ A and every n. Let gn : A→ R

be such that gn → 0 uniformly, gn ≥ 0 and gn+1(x) ≤ gn(x). Then
∞∑
n=1

fn(x)gn(x) converges

uniformly on A.
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5 DIFFERENTIATION OF FUNCTIONS OF ONE

VARIABLE

DEFINITION Let a function f be defined on some open interval containing x0 ∈ R. We
say that f is differentiable at x0 if

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h

exists. We call f ′(x0) the derivative of f at x0. Rewriting this condition as

lim
x→x0

f(x)− f(x0)− f ′(x0)(x− x0)

x− x0

= 0,

we see that the straight line y = f(x0) + f ′(x0)(x− x0), called the tangent line to the graph
of f at x0, is a good approximation to f near x0, and rewriting it as

lim
∆x→0

[
f(x0 + ∆x)− f(x0)

∆x
− f ′(x0)

]
= 0,

we see that f ′(x0), being the limit of slopes of the secant lines, can be interpreted as the
slope of the tangent line to the graph of f at (x0, f(x0)).

Proposition 1 If f is differentiable at x0, then f is continuous at x0.

Theorem 2 Let f, g : I → R be defined on an open interval I and differentiable at x ∈ I.
Let α ∈ R. Then the functions αf , f + g, f · g and f

g
(provided g 6= 0) are differentiable at

x. Moreover,

(i) (αf)′(x) = αf ′(x),

(ii) (f + g)′(x) = f ′(x) + g′(x),

(iii) (f · g)′(x) = f(x)g′(x) + g(x)f ′(x),

(iv)
(
f(x)
g(x)

)′
= g(x)f ′(x)−f(x)g′(x)

g(x)2
.

Theorem 3 (Chain rule) Let f : I → J and g : J → R, where I and J are open
intervals. Suppose that f is differentiable at c ∈ I and that g is differentiable at f(c). Then
the composite function g ◦ f : I → R defined by g ◦ f(x) = g(f(x)) is differentiable at c and

(g ◦ f)′(c) = g′(f(c))f ′(c).

LOCAL EXTREMA
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DEFINITION Let f : E → R, E ⊂ R. We say that f has a local maximum (local
minimum) at c if there exists a neighbourhood U of c such that f(x) ≤ f(c) ( f(x) ≥ f(c))
for every x ∈ U . If f has either a local maximum or a local minimum at c, we say that f
has a local extremum at c.

The next theorem gives a necessary, but not sufficient, condition that a local extremum
exists at a given point.

Theorem 4 Let a < c < b and f : [a, b] → R be given. If f has a local extremum at c and
f ′(c) exists, then f ′(c) = 0.

Remarks

(a) The restriction that c is not an endpoint of [a, b] is necessary. For instance, the function
f(x) =

√
x on [0, 1] has a local minimum at 0 and a local maximum at 1, f ′+(0) = ∞

and f ′−(1) = 1
2
.

(b) The function f(x) = x3 on (−1, 1) satisfies f ′(0) = 0 but does not have a local
extremum at 0.

(c) The theorem assures us that if we are seeking all local extrema of a differentiable
function on an open interval, then we need only consider, as candidates, those c for
which f ′(c) = 0.

(d) If f(x) = |x| for x ∈ R, then f has a local minimum at c = 0, but f ′(0) does not exist.

MEAN VALUE THEOREMS

Theorem 5 (Rolle’s theorem) Suppose that f : [a, b]→ R is continuous on [a, b], differ-
entiable on (a, b) and f(a) = f(b). Then there exists a number ξ ∈ (a, b) such that f ′(ξ) = 0.

Theorem 6 (Lagrange) Let f : [a, b] → R be continuous on [a, b], and differentiable on
(a, b). Then there exists a point c ∈ (a, b) such that f(b)− f(a) = f ′(c)(b− a).

Theorem 7 Suppose that f is continuous on [a, b] and differentiable on (a, b).

(i) If f ′(x) ≥ 0 for every x ∈ (a, b), then f is nondecreasing on [a, b].

(ii) If f ′(x) ≤ 0 for every x ∈ (a, b), then f is nonincreasing on [a, b].

(iii) If f ′(x) > 0 for every x ∈ (a, b), then f is strictly increasing on [a, b].

(iv) If f ′(x) < 0 for every x ∈ (a, b), then f is strictly decreasing on [a, b].

(v) If f ′(x) = 0 for every x ∈ (a, b), then f is constant on [a, b].

Theorem 8 Suppose that f is continuous on [a, b] and is twice differentiable on (a, b), and
that x0 ∈ (a, b).

(i) If f ′(x0) = 0 and f ′′(x0) > 0, then x0 is a strict local minimum of f .

(ii) If f ′(x0) = 0 and f ′′(x0) < 0, then x0 is a strict local maximum of f .
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6 INTEGRALS OF FUNCTIONS OF ONE VARIABLE

DEFINITION Let f : [a, b]→ R be a bounded function. We partition [a, b], which means
we choose an integer n and points x0, x1, . . . , xn−1, xn in such a way that a = x0 < x1 <
. . . < xn−1 < xn = b. Denote such a partition by P , that is, let P = {x0, x1, . . . , xn}. Then
form two sums

U(f, P ) =
n∑
i=1

Mi(xi − xi−1), where Mi = sup
x∈[xi−1,xi]

f(x)

and

L(f, P ) =
n∑
i=1

mi(xi − xi−1), where mi = inf
x∈[xi−1,xi]

f(x),

called the upper and lower Riemann sum (with respect to P ), respectively.

Since f is bounded, say −M ≤ f(x) ≤M for every x ∈ [a, b], we see that

(6.1) −(b− a)M ≤ L(f, P ) ≤ U(f, P ) ≤ (b− a)M

for every partition P of [a, b].

It seems reasonable to expect that as the size of the intervals in P gets smaller, U(f, P )
decreases while L(f, P ) increases.

DEFINITION If P and P ′ are partitions of [a, b] with P ⊂ P ′, then P ′ is called a refinement
of P .

Lemma 1 If P ′ is a refinement of P , then L(f, P ) ≤ L(f, P ′) and U(f, P ) ≥ U(f, P ′).

According to the inequality (6.1) Riemann sums are bounded: therefore we can introduce
the following notation:∫ b

a

f(x) dx = inf{U(f, P ); P is any partition of [a, b]},

the upper Riemann integral, and∫ b

a

f(x) dx = sup{L(f, P ); P is any partition of [a, b]},

the lower Riemann integral.

Lemma 2 Let P1 and P2 be any partitions of [a, b]. Then L(f, P1) ≤ U(f, P2).

Corollary 3 ∫ b

a

f(x) dx ≤
∫ b

a

f(x) dx.
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DEFINITION We say that f : [a, b] → R is Riemann integrable or that the Riemann
integral exists, if ∫ b

a

f(x) dx =

∫ b

a

f(x) dx.

The common value is denoted by
∫ b
a
f(x) dx.

Theorem 4 A function f : [a, b] → R is integrable on [a, b] if given any ε > 0 there is a
partition P such that

U(f, P )− L(f, P ) < ε.

Theorem 5

(i) If f : [a, b]→ R is bounded and continuous at all but finitely many points of [a, b], then
f is integrable on [a, b].

(ii) Any increasing (decreasing) function on [a, b] is integrable on [a, b].

PROPERTIES OF INTEGRALS
Theorem 6

(i) If f is bounded and integrable on [a, b] and k ∈ R, then k · f is integrable on [a, b] and∫ b

a

k · f(x) dx = k

∫ b

a

f(x) dx.

(ii) If f and g are bounded and integrable on [a, b], then f + g is integrable on [a, b] and∫ b

a

(f + g) dx =

∫ b

a

f dx+

∫ b

a

g dx.

(iii) If f and g are bounded and integrable on [a, b] and f(x) ≤ g(x) for every x ∈ [a, b],
then ∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx.

(iv) If f is bounded and integrable on [a, b] and [b, c], then f is integrable on [a, c] and∫ c

a

f dx =

∫ b

a

f dx+

∫ c

b

f dx.

Theorem 7 (Mean value theorem) If f is continuous on [a, b], then∫ b

a

f(x) dx = f(c)(b− a)
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for some c ∈ [a, b].

Let f : [a, b]→ R be a continuous function.

DEFINITION An antiderivative of f is a continuous function F : [a, b]→ R such that F
is differentiable on (a, b) and F ′(x) = f(x) for a < x < b.

Theorem 8 Let f be bounded and integrable on [a, b]. Then |f | is integrable on [a, b], and∣∣∣ ∫ b

a

f dx
∣∣∣ ≤ ∫ b

a

|f | dx .

Theorem 9 (The fundamental theorem of Calculus) Let f : [a, b]→ R be a contin-
uous function. Then f has an antiderivative F and∫ b

a

f(x) dx = F (b)− F (a).

If G is any other antiderivative of f , we also have∫ b

a

f(x) dx = G(b)−G(a).

Theorem 10 (Integration by parts) If du
dx

and dv
dx

are continuous on [a, b], then∫ b

a

u
dv

dx
dx = u(b)v(b)− u(a)v(a)−

∫ b

a

du

dx
v dx.

We often need to integrate unbounded functions or to integrate over unbounded regions. The
resulting improper integrals lead to convergence problems analogous to those for an infinite
series.

DEFINITION (improper integrals - first kind) Let f : (a, b] → R and suppose that
f is not necessarily bounded at a (near a) but f is integrable on [a + ε, b] for every ε > 0

sufficiently small. We say that f is improperly integrable (or
∫ b
a
f(x) dx exists) if

lim
ε→0+

∫ b

a+ε

f(x) dx exists.

If this limit exists it is denoted by
∫ b
a
f(x) dx (that is,

∫ b

a

f(x) dx = lim
ε→0+

∫ b

a+ε

f(x) dx).

In a similar manner we define improper integrals f : [a, b)→ R (if f is unbounded near b).

DEFINITION (improper integrals - second kind) Let f : [a,∞) → R and suppose

that
∫ b
a
f(x) dx exists for every b > a. We say that f is improperly integrable if

lim
b→∞

∫ b

a

f(x) dx exists.
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If this limit exists, it is denoted by
∫∞
a
f(x) dx.

Similarly we define improper integrals for f : (−∞, a]→ R,∫ a

−∞
f(x) dx = lim

b→−∞

∫ a

b

f(x) dx.

If f : (−∞,∞)→ R, we set∫ ∞
−∞

f(x) dx = lim
a→−∞

∫ 0

a

f(x) dx+ lim
b→∞

∫ b

0

f(x) dx.

The integral
∫∞
−∞ f(x) dx diverges if one of these limits does not exist.

Theorem 11 (Comparison test for improper integrals) Suppose f(x) ≥ 0 and g(x) ≥
0 for x ≥ a.

(i) If g(x) ≤ f(x), then the convergence of
∫∞
a
f(x) dx implies the convergence of

∫∞
a
g(x) dx.

(ii) If g(x) ≥ f(x), then the divergence of
∫∞
a
f(x) dx implies the divergence of

∫∞
a
g(x) dx.

The analogy between positive - term series and improper integrals of positive functions is
the key to the integral test.

Theorem 12 If f is continuous, nonnegative and nonincreasing on [1,∞), then
∑∞

n=1 f(n)
and

∫∞
1
f(x) dx converge or diverge together.

14



7 TAYLOR SERIES

TAYLOR’S FORMULA

Theorem 1 (Taylor’s formula) Suppose that the first (n+ 1) derivatives of the function
f exist on an interval containing points a and b. Then

f(b) = f(a) + f ′(a)(b− a) +
f ′′(a)

2!
(b− a)2 +

f (3)(a)

3!
(b− a)3(7.1)

+ . . .+
f (n)(a)

n!
(b− a)n +

f (n+1)(ξ)

(n+ 1)!
(b− a)n+1

for some number ξ between a and b.

REMARK Taylor’s formula with the Cauchy form of the remainder:

f(b) = f(a) + f ′(a)(b− a) +
f ′′(a)

2!
(b− a)2 + . . .+

f (n)(a)

n!
(b− a)n

+
1

n!

∫ b

a

(b− t)nf (n+1)(t) dt.

for some number t between a and b.

TAYLOR SERIES

Suppose that f is a function with continuous derivatives of all orders in an interval (c, d).
Let a ∈ (c, d) and let n be an arbitrary positive integer. We know by Taylor’s formula that

f(x) = Pn(x) +Rn(x),

where

Pn(x) = f(a) + f ′(a)(x− a) + f ′′(a)
(x− a)2

2!
+ . . .+ f (n)(a)

(x− a)n

n!

and Rn is either the Lagrange or Cauchy remainder.
Now suppose that, for some particular fixed value of x, we can show that

lim
n→∞

Rn(x) = 0.

Then it follows from (7.1) that

f(x) = lim
n→∞

Pn(x) = lim
n→∞

(
n∑
k=0

f (k)(a)

k!
(x− a)k

)

=
∞∑
k=0

f (k)(a)

k!
(x− a)k.

The infinite series in this equation is called the Taylor series (of f at a).
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EXAMPLES We have the following Taylor formulae for the exponential and trigonometric
functions:

ex = 1 + x+
x2

2!
+
x3

3!
+ . . .+

xn

n!
+

eξ

(n+ 1)!
xn+1,

cosx = 1− x2

2!
+
x4

4!
− . . .+ (−1)n

x2n

(2n)!
+ (−1)n+1 cos ξ

(2n+ 2)!
x2n+2,

sinx = x− x3

3!
+
x5

5!
− . . .+ (−1)n

x2n+1

(2n+ 1)!
+ (−1)n+1 cos ξ

(2n+ 3)!
x2n+3,

In each case ξ is some number between 0 and x. Since ξ is between 0 and x, it follows that
0 < eξ ≤ e|x| in Taylor’s formula for ex. In the formulas for the sine and cosine functions,
0 ≤ | cos ξ| ≤ 1. Therefore the fact that

lim
n→∞

xn

n!
= 0 for all x

implies that limn→∞Rn(x) = 0 in all three cases above. This gives the following Taylor
series:

ex =
∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+
x4

4!
+ . . . ,

cosx =
∞∑
n=0

(−1)n
x2n

(2n)!
= 1− x2

2!
+
x4

4!
− x6

6!
+ . . . ,

sinx =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
= x− x3

3!
+
x5

5!
− x7

7!
+ . . . .

8 VECTOR FUNCTIONS - FUNCTIONS OF SEV-

ERAL VARIABLES

Addition and scalar multiplication of n-tuples are defined by

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn)

and
a(x1, . . . , xn) = (ax1, . . . , axn) for a ∈ R.

The length or norm of a vector x in Rn is defined by

|x| = ‖x‖ =

{
n∑
i=1

x2
i

} 1
2

.
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The distance between two vectors x and y is defined by

|x− y| = ‖x− y‖ =

{
n∑
i=1

(xi − yi)2

} 1
2

.

The inner (scalar) product of x and y is defined by

(x, y) =
n∑
i=1

xiyi.

We have:
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Theorem 1 For x, y, z ∈ Rn there holds:

(i) (x, x) = |x|2,

(ii) |(x, y)| ≤ |x| · |y| (Cauchy - Schwarz inequality),

(iii) |x+ y| ≤ |x|+ |y|

(iv) |x− y| ≤ |x− z|+ |z − y| ((iii) and (iv) are called triangle inequalities)

DEFINITION Let S and T be given sets. A function f : S → T consists of two sets S
and T together with a ”rule” that assigns to each x ∈ S a specific element of T , denoted by
f(x). One often writes x 7→ f(x) to denote that x is mapped to the element f(x).

For a function f : S → T , the set S is called the domain of F . The range, or image, of f is
the subset of T defined by f(S) = {f(x) ∈ T ; x ∈ S}.

If f : Ω ⊂ Rn → Rm, we write

f(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)).

The fi are called coordinate functions, or components of f .

Composite functions If two functions f and g are so related that the range space of f
is the same as the domain space of g, we may form the composite function g ◦ f by first
applying f and then g. Thus

g ◦ f(x) = g(f(x))

for every vector x in the domain of f .

The operation of addition and multiplication of vector functions
Let f and g be functions with the same domain and having the same range space. Then the
function f + g is the sum of f and g defined by

(f + g)(x) = f(x) + g(x)

for all x in the domain of both f and g.

Similarly, if r ∈ R, then rf is the numerical multiple of f by r and is defined by rf(x) =
r · f(x).

LIMITS AND CONTINUITY OF VECTOR FUNCTIONS

Let f : Ω ⊂ Rn → Rm. We use |x−y| =
√∑n

i=1(xi − yi)2, x = (x1, . . . , xn), y = (y1, . . . , yn).

DEFINITION Let Ω ⊂ Rn. Then a is a limit point of Ω if, for every ε > 0, there exists
a point y ∈ Ω such that 0 < |a− y| < ε.

In other words, the definition says that a is a limit point (or accumulation point) of Ω if
there are points in Ω other than a that are contained in a ball of arbitrarily small radius
with centre at a.

18



We come now to the definition of a limit for a function f : Ω→ Rm, Ω ⊂ Rn.

DEFINITION Let y0 ∈ Rm, and let x0 ∈ Rn be a limit point of Ω. Then y0 is the limit
of f at x0 if, for every ε > 0, there is a δ > 0 such that |f(x)− y0| < ε whenever x satisfies
0 < |x− x0| < δ and x ∈ Ω. (We write lim

x→x0
f(x) = y0)

Less formally, the definition says that for x 6= x0, f(x) can be made arbitrarily close to y0

by choosing x sufficiently close to x0.

Geometrically, the idea is this: given any ball B(y0, ε) in Rm, there exists a ball B(x0, δ) ⊂ Rn

whose intersection with Ω (the domain of f), except possibly for x0 itself, is sent by f into
B(y0, ε).

Theorem 2 Let f : Ω→ Rm, Ω ⊂ Rn and let x0 be a limit point of Ω. Then lim
x→x0

f(x) = y0

if and only if lim
x→x0

fi(x) = y0
i , i = 1, . . . ,m.

DEFINITION A function f is continuous at x0 if x0 is in the domain of f and lim
x→x0

f(x) =

f(x0).

At a nonlimit or isolated point of the domain, we cannot ask for a limit; instead we simply
define f to be automatically continuous at such a point.

Theorem 3 A vector function is continuous at a point x0 if and only if its coordinate
functions are continuous there.

Theorem 4 Every linear function L : Rn → Rm is continuous on Rn, and for such an L
there is a number k such that

|L(x)| ≤ k|x| for every x ∈ Rn.

The continuity of many functions can be deduced from repeated applications of the following
theorem:

Theorem 5

(1) The functions Pk : Rn → R, where Pk(x) = xk, (i.e. Pk : (x1, . . . , xn) 7→ xk) are
continuous for k = 1, . . . , n.

(2) The functions S : R2 → R and M : R2 → R, defined by S(x, y) = x + y and
M(x, y) = xy are continuous.

(3) If f : Rn → Rm and g : Rm → Rp are continuous, then the composition g ◦ f given by
g ◦ f(x) = g(f(x)) is continuous wherever it is defined.
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9 DIFFERENTIABILITY OF VECTOR FUNCTIONS

DEFINITION Let Ω ⊂ Rn. A point x0 ∈ Ω is an interior point of a set S if there exists
a positive number δ such that {x : |x− x0| < δ} ⊂ Ω (equivalently B(x0, δ) ⊂ Ω)
A subset of Rn, all of whose points are interior, is called open.

Many of the techniques of calculus have as their foundation the idea of approximating a vector
function by a linear function or by an affine function. Recall that a function A : Rn → Rm

is affine if there exists a linear function L : Rn → Rm and a vector y0 ∈ Rm such that

A(x) = L(x) + y0 for every x ∈ Rn.

EXAMPLE Consider a point y0 =

(
1
3

)
and a linear function L : R3 → R2 given by

y = L(x) =

(
1 2 1
3 4 5

) x1

x2

x3

 ,

equivalently,

y1 = x1 + 2x2 + x3

y2 = x1 + 4x2 + 5x3.

The affine function A(x) = L(x) + y0 is defined by the equations

y1 = x1 + 2x2 + x3 + 1

y2 = 3x1 + 4x2 + 5x3 + 3.

We shall now study the possibility of approximating an arbitrary vector function f : Ω→ Rm,
with Ω ⊆ Rn, near a point x0 of Ω by an affine function A.

We begin by requiring that f(x0) = A(x0). Since A(x) = L(x) + y0, where L is linear, we
obtain f(x0) = L(x0) + y0 and so

(7.1) A(x) = L(x− x0) + f(x0).

A natural requirement is that

(7.2) lim
x→x0

(
f(x)− A(x)

)
= 0.

We observe that from (7.1) we have

f(x)− A(x) = f(x)− f(x0)− L(x− x0).

Since L is continuous, (7.2) says that

0 = lim
x→x0

(
f(x)− A(x)

)
= lim

x→x0

(
f(x)− f(x0)

)
,
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which is precisely the statement that f is continuous at x0. This is significant, but it says
nothing about L. Thus, in order for our notion of approximation to distinguish one affine
function from another or to measure how well A approximates f , some additional requirement
is necessary. We require that f(x) − A(x) approaches 0 faster than x approaches x0. That
is, we demand that

lim
x→x0

f(x)− f(x0)− L(x− x0)

|x− x0|
= 0.

Equivalently, we can ask that f be representable in the form

f(x) = f(x0) + L(x− x0) + |x− x0|z(x− x0),

where z(y) is some function that tends to 0 as y tends to 0.

DEFINITION A function f : D ⊂ Rn → Rm is said to be differentiable at x0, if

(1) x0 is an interior point of the domain D of f ,

(2) there is an affine function that approximates f near x0. That is, there exists a linear
function L : Rn → Rm such that

lim
x→x0

f(x)− f(x0)− L(x− x0)

|x− x0|
= 0.

The linear function L is called the differential of f at x0.

The function f is said to be differentiable if it is differentiable at every point of its domain.

If n = m = 1, an affine function has the form ax+b. Hence f : R→ R that is differentiable at
x0 can be approximated near x0 by a function A(x) = ax+b. Since f(x0) = A(x0) = ax0 +b,
we obtain b = f(x0)− ax0 and

A(x) = ax+ b = a(x− x0) + f(x0).

The linear part of A, denoted earlier by L, is L(x) = ax. The condition (2) of the definition
becomes

lim
x→x0

f(x)− f(x0)− a(x− x0)

|x− x0|
= 0.

This is equivalent to

lim
x→x0

f(x)− f(x0)

x− x0

= a.

The number a is commonly denoted by f ′(x0) and it is the derivative of f at x0. The affine
function A is therefore given by

A(x) = f(x0) + f ′(x0)(x− x0).

Its graph is the tangent line to the graph of f at x0.
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General case: n,m ≥ 1. A linear function L : Rn → Rm must be representable by an m
- by - n matrix, that is, L(x) = Ax. We shall show that the matrix A of L satisfying (1)
and (2) of the definition can be computed in terms of partial derivatives of f . To find the
matrix A, we consider the standard basis (e1, . . . , en) of Rn. If x0 is an interior point of the
domain of f , the vectors

xj = x0 + tej, j = 1, . . . ,m,

are all in the domain of f for sufficiently small t. By condition (2) of the definition we have

lim
t→0

f(xj)− f(x0)− L(tej)

t
= 0.

Since L is linear, we deduce from this

lim
t→0

f(xj)− f(x0)

t
= L(ej).

L(ej) is the jth column of the matrix A of L. On the other hand the vector xj differs from
x0 only in the jth coordinate, that is,

lim
t→0

f(xj)− f(x0)

t
=


∂f1(x0)
∂xj

·
·
·

∂fm(x0)
∂xj


and the entire matrix of L has the form

∂f1(x0)
∂x1

, ∂f1(x0)
∂x2

, . . . , ∂f1(x0)
∂xn

∂f2(x0)
∂x1

, ∂f2(x0)
∂x2

, . . . , ∂f2(x0)
∂xn

. . .
∂fm(x0)
∂x1

, ∂fm(x0)
∂x2

, . . . , ∂fm(x0)
∂xn

 , aij =
∂fi(x0)

∂xj
.

This matrix is called the Jacobian matrix or the derivative of f at x0, and it is denoted
by f ′(x0). It follows that L is uniquely determined by the partial derivatives ∂fi(x0)

∂xj
.

The differential of L at x0 is also denoted by dx0f or Dx0f .

We summarize what we have just proved as follows.

Theorem 1 If the function f : Rn → Rm is differentiable at x0, then the differential dx0f
is uniquely determined, and its matrix is the Jacobian matrix of f . That is, for every vector
y in Rn we have

Dx0f(y) = f ′(x0)y.

We interpret y = f(x0) + f ′(x0)(x − x0) as the equation of the tangent plane to the graph
of f at (x0, f(x0)).

22



EXAMPLE The function (
x2 + ey

x+ y sin z

)
has coordinate functions f1(x, y, z) = x2 + ey and f2(x, y, z) = x + y sin z. The Jacobian
matrix of f at (x, y, z) is

f ′(x, y, z) =

[
∂f1
∂x
, ∂f1

∂y
, ∂f1

∂z
∂f2
∂x
, ∂f2

∂y
, ∂f2

∂z

]
=

[
2x, ey, 0
1, sin z, y cos z

]
.

The differential of f at (1, 1, π) is

d(1,1,π)f(x, y, z) =

[
2 e 0
1 0 −1

] x
y
z

 =

[
2x+ ey
x− z

]
.

The affine mapping that approximates f near (1, 1, π) is

A(x, y, z) =

[
2 e 0
1 0 −1

] x− 1
y − 1
z − π

+ f(1, 1, π)

=

[
1 + e

1

]
+

[
2 e 0
1 0 −1

] x− 1
y − 1
z − π


=

[
1 + e+ 2(x− 1) + e(y − 1)

1 + (x− 1)− (z − π)

]
=

[
2x+ ey − 1
x− z + π

]
.

Remark: If f : Rn → R, then the Jacobian matrix is reduced to a gradient

f ′(x) =
( ∂f
∂x1

,
∂f

∂x2

, . . . ,
∂f

∂xn

)
.

The notation ∇f(x) is also used. In this case the differential of f at x0 is given by

L(x) = dx0f(x) = x1
∂f(x0)

∂x1

+ x2
∂f(x0)

∂x2

+ . . .+ xn
∂f(x0)

∂xn
.

EXAMPLE Let f(x) =
∑n

i=1 x
2
i = |x|2. Show that f is differentiable at every point

x0 ∈ Rn.
If f is differentiable at x0, then the differential of f at x0 must be given by

L(x) = dx0f(x) =
n∑
i=1

2x0
ixi = 2x0x.

Then

f(x)− f(x0)− L(x− x0)

|x− x0|
=
|x|2 − |x0|2 − 2x0(x− x0)

|x− x0|

=
|x|2 − |x0|2 − 2x0x+ 2|x0|2

|x− x0|
=
|x|2 + |x0|2 − 2x0x

|x− x0|
=
|x− x0|2

|x− x0|
= |x− x0| → 0 as x→ x0.
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Therefore f is differentiable at each point x0 ∈ Rn.

How one can tell whether or not a vector function is differentiable? We only know that if f
is differentiable then the differential is represented by the Jacobian matrix.

Theorem 2 If the domain of f : Rn → Rm is an open set D ⊂ Rn on which all partial
derivatives ∂fi

∂xj
are continuous, then f is differentiable at every point of D.

For example
f(x1, x2, x3) =

(
x2

1 + x1x2x3, e
x1+x2+x3 , sin(x1 + x2 + x3)

)
is differentiable at every point of R3.

It follows from the definition of a differentiable vector function that:

Theorem 3 If f is differentiable at x0, then f is continuous at x0.

The converse is not true.

EXAMPLE Consider the function

f(x, y) =

{
xy√
x2+y2

for (x, y) 6= (0, 0)

0 for (x, y) = (0, 0).

Since lim(x,y)→(0,0)
xy√
x2+y2

= 0 = f(0, 0), f is continuous at (0, 0). If f were differentiable at

(0, 0), then
d(0,0)f(x, y) = (fx(0, 0), fy(0, 0)).

Since

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
= 0

and

fy(0, 0) = lim
h→0

f(0, h)− f(0, 0)

h
= 0,

d(0,0)f(x, y) = 0 for all (x, y) ∈ R2. On the other hand

lim
(x,y)→(0,0)

f(x, y)− f(0, 0)− d(0,0)f(x, y)√
x2 + y2

= lim
(x,y)→(0,0)

xy

x2 + y2
= 0,

which is impossible as the function xy
x2+y2

does not have a limit at the origin.

Notice that f has partial derivatives at (0, 0): ∂f(0,0)
∂x

= 0 and ∂f(0,0)
∂y

= 0. This means that the
gradient (the Jacobian matrix) exists. However, this does not guarantee the differentiability
of f at (0, 0).
Let f : Rn → R, x0 ∈ Rn and u ∈ Rn be a unit vector. This means |u| = 1, where

u = (u1, . . . , un), |u| =

(
n∑
i=1

u2
i

) 1
2

.
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DEFINITION The directional derivative of f at x0 in the direction u, denoted by ∂f(x0)
∂u

or Duf(x0), is defined by

∂f(x0)

∂u
= lim

t→0

f(x0 + tu)− f(x0)

t
.

From this definition we see that the directional derivative is the rate of change of f in the
direction u.

Theorem 4 If f is differentiable at x, then

∂f(x)

∂u
= f ′(x)u

for every unit vector in Rn.

EXAMPLE Let f(x1, x2, x3) = x2
1 + x2

3 + ex2 , u =
(

1
2
, 1

2
, 1√

2

)
.

Then

∂f(1, 1, 1)

∂u
=

∂f(1, 1, 1)

∂x1

u1 +
∂f(1, 1, 1)

∂x2

u2 +
∂f(1, 1, 1)

∂x3

u3

= 2 · 1

2
+ e · 1

2
+ 2 · 1√

2
= 1 +

e

2
+
√

2.

EXAMPLE Show that the existence of all directional derivatives at a point x does not
imply the differentiability at this point.
Let

f(x, y) =

{
x|y|√
x2+y2

for (x, y) 6= (0, 0),

0 for (x, y) = (0, 0).

We know that f is not differentiable at (0, 0). However, ∂f(0,0)
∂u

exists at each direction
u = (u1, u2). Indeed,

∂f(0, 0)

∂u
= lim

t→0

tu1|tu2|
t
√
t2u2

1 + t2u2
2

= lim
t→0

t|t|u1|u2|
t|t|

= u1|u2|.

We have that ∂f(x0)
∂u

is the slope of the tangent line at (x0, f(x0)) to the curve formed by the
intersection of the graph of f with the plane that contains (x0 + tu) and x0, and is parallel
to the z-axis.

We always have
∂f(x0)

∂u
= ∇f(x0)u ≤ |∇f(x0)||u| = |∇f(x0)|.

For u = ∇f(x0)
|∇f(x0)| , we have

∂f(x0)

∂u
=
∇f(x0) · ∇f(x0)

|∇f(x0)|
=
|∇f(x0)|2

|∇f(x0)|
= |∇f(x0)|.
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This shows that the rate of change of ∂f(x0)
∂u

is never greater than |∇f(x0)| and is equal to it
in the direction of the gradient.

CHAIN RULE
As in the one-dimensional case, the chain rule is a rule for differentiating composite functions.

Theorem 5 Let g be a continuously differentiable function on an open set Ω ⊂ Rn and let
f be defined and differentiable for a < t < b, taking its values in Ω. Then the composite
function F (t) = g(f(t)) is differentiable for a < t < b and

F ′(t) = ∇g(f(t)) · f ′(t).

EXAMPLE Let g(x, y) = x2y + ex+y for (x, y) ∈ R2 and let f(t) = (t, t2). Then

f ′(t) = (1, 2t), ∇g(x, y) = (2xy + ex+y, x2 + ex+y)

and

F ′(t) = (2t3 + et+t
2

, t2 + et+t
2

) · (1, 2t)
= 2t3 + et+t

2

+ 2t3 + 2tet+t
2

= 4t3 + et+t
2

+ 2tet+t
2

.

The following theorem gives the extension to any dimension for the domain and range of g
and f .

Theorem 6 (the Chain Rule) Let f : Rn → Rm be continuously differentiable at x and
let g : Rm → Rp be continuously differentiable at f(x). If g ◦ f is defined on an open set
containing x, then g ◦ f is continuously differentiable at x, and(

g ◦ f
)′

(x) = g′(f(x))f ′(x).

Proof The matrices here have the form
∂g1(f(x))

∂y1
, . . . , ∂g1(f(x))

∂ym

. . .
∂gp(f(x))

∂y1
, . . . , ∂gp(f(x))

∂ym

 and

 ∂f1(x)
∂x1

, . . . , ∂f1(x)
∂xn

. . .
∂fm(x)
∂x1

, . . . , ∂fm(x)
∂xn


The product of the matrices has as its ij th entry the sum of products

m∑
k=1

∂gi(f(x))

∂yk

∂fk(x)

∂xj
.

This expression is the scalar product of two vectors ∇gi(f(x)) and ∂f(x)
∂xj

. It follows from
Theorem 5 that

∇gi(f(x))
∂f(x)

∂xj
=
∂(gi ◦ f)(x)

∂xj
,

because we differentiate with respect to the single variable xj. 2

EXAMPLES
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(1) Let f(x, y) = (x2 + y2, x2 − y2) and g(u, v) = (uv, u+ v). Find (g ◦ f)′(2, 1). First we
compute g′ and f ′

g′(u, v) =

[
v, u
1, 1

]
, f ′(x, y) =

[
2x, 2y
2x, −2y

]
.

To find (g ◦ f)′(2, 1), we note that f(2, 1) = (5, 3),

g′(5, 3) =

[
3, 5
1, 1

]
f ′(2, 1) =

[
4, 2
4, −2

]
.

Then the product of the matrices g′(5, 3) and f ′(2, 1) gives

(g ◦ f)(2, 1) =

[
3, 5
1, 1

]
·
[

4, 2
4, −2

]
=

[
12 + 20, 6− 10
4 + 4, 2− 2

]
=

[
32, −4
8, 0

]
.

(2) Let w = g(x, y, z) : R3 → R and

(x, y, z) = f(s, t) =
(
f1(s, t), f2(s, t), f3(s, t)

)
: R2 → R3.

Compute the partial derivatives ∂w
∂s

and ∂w
∂t

of the composite function

w = g
(
f1(s, t), f2(s, t), f3(s, t)

)
.

By the chain rule we have

(∂w
∂s
,
∂w

∂t

)
=
(∂g
∂x
,
∂g

∂y
,
∂g

∂z

)
·

 ∂x
∂s
, ∂x

∂t
∂y
∂s
, ∂y

∂t
∂z
∂s
, ∂z

∂t

 .
Matrix multiplication yields

∂w

∂s
=

∂g

∂x

∂x

∂s
+
∂g

∂y

∂y

∂s
+
∂g

∂z

∂z

∂s
∂w

∂t
=

∂g

∂x

∂x

∂t
+
∂g

∂y

∂y

∂t
+
∂g

∂z

∂z

∂t
.

(3) Let g : R3 → R3, f : R2 → R3. We introduce notation

w = (w1, w2, w3) =
(
g1(x, y, z), g2(x, y, z), g3(x, y, z)

)
,

(x, y, z) =
(
f1(s, t), f2(s, t), f3(s, t)

)
.

Compute ∂w1

∂s
, ∂w1

∂t
, ∂w2

∂s
, ∂w2

∂t
, ∂w3

∂s
and ∂w3

∂t
. We have ∂w1

∂s
, ∂w1

∂t
∂w2

∂s
, ∂w2

∂t
∂w3

∂s
, ∂w3

∂t

 =


∂g1
∂x
, ∂g1

∂y
, ∂g1

∂z
∂g2
∂x
, ∂g2

∂y
, ∂g2

∂z
∂g3
∂x
, ∂g3

∂y
, ∂g3

∂z

 ·
 ∂f1

∂s
, ∂f1

∂t
∂f2
∂s
, ∂f2

∂t
∂f3
∂s
, ∂f3

∂t

 .
Matrix multiplication yields, for j = 1, 2, 3:

∂wj
∂s

=
∂gj
∂x

∂f1

∂s
+
∂gj
∂y

∂f2

∂s
+
∂gj
∂z

∂f3

∂s
,

∂wj
∂t

=
∂gj
∂x

∂f1

∂t
+
∂gj
∂y

∂f2

∂t
+
∂gj
∂z

∂f3

∂t
.
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10 THE IMPLICIT AND INVERSE FUNCTION THE-

OREMS

THE IMPLICIT FUNCTION THEOREM

An equation in two variables x and y may have one or more solutions for y in terms of x
or for x in terms of y. We say that these solutions are functions implicitly defined by the
equation.
For example the equation of the unit circle , x2 + y2 = 1, implicitly defines four function
(among others):

y =
√

1− x2 for x ∈ [−1, 1],

y = −
√

1− x2 for x ∈ [−1, 1],

x =
√

1− y2 for y ∈ [−1, 1],

x = −
√

1− y2 for y ∈ [−1, 1].

In general case, we consider a function F : Rn×Rm → Rm, and study the relation F (x, y) =
0, or, written out,

F1(x1, . . . , xn, y1, . . . , ym) = 0

. . .

Fm(x1, . . . , xn, y1, . . . , ym) = 0.

The goal is to solve for the m unknowns y1, . . . , ym from the m equations in terms of
x1, . . . , xn.

Theorem 1 (The Implicit Function Theorem) Let Ω ⊂ Rn ×Rm be an open set, and
let F : Ω → Rm be function of class C1. Suppose (x0, y0) ∈ Ω and F (x0, y0) = 0. Assume
that

det

 ∂F1

∂y1
, . . . , ∂F1

∂ym

. . .
∂Fm

∂y1
, . . . , ∂Fm

∂ym

 6= 0 evaluated at (x0, y0),

where F = (F1, . . . , Fm). Then there are open sets U ⊂ Rn and V ⊂ Rm, with x0 ∈ U and
y0 ∈ V , and a unique function f : U → V such that

F (x, f(x)) = 0

for all x ∈ U . Furthermore, f is of class C1.

THE INVERSE FUNCTION THEOREM

If a function f is thought of as sending vectors x into vectors y in the range of f , then it is
natural to start with y and ask what vector or vectors x are sent by f into y.
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More particularly, we may ask if there is a function that reverses the action of f . If there is
a function f−1 with the property

f−1(y) = x if and only if f(x) = y,

then f−1 is called the inverse function of f . It follows that the domain of f−1 is the range
of f and that the range of f−1 is the domain of f .

Given a function f : Ω ⊂ Rn → Rn, where Ω ⊆ Rn, one may ask:

(1) Does it have an inverse?

(2) If it does, what are its properties?

In general it is not easy to answer these questions just by looking at the function. However,
in certain circumstances we get a useful result.

Theorem 2 (The inverse function theorem) Let f : Rn → Rn be continuously differ-
entiable function such that f ′(x0) has an inverse. Then there is an open set Ω containing x0

such that f , when restricted to Ω, has a continuously differentiable inverse. The image set
f(Ω) is open. In addition, [

f−1(y0)
]′

= [f ′(x0)]
−1
,

where y0 = f(x0). That is, the differential of the inverse function at y0 is the inverse of the
differential of f at x0.
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