Complex Analysis: Supplementary notes I

1 FIELDS

The complex numbers, \mathbb{C} , form a *field*. This means that we have a *set*, here \mathbb{C} , and two binary operations

addition,
$$+ : \mathbb{C} \times \mathbb{C} \to \mathbb{C}$$
, and multiplication, $\cdot : \mathbb{C} \times \mathbb{C} \to \mathbb{C}$,

for which the axioms F1-F7 below hold true. Note that multiplication can also be denoted by \times , or simply by juxtaposition.

(F1) Associativity of addition: (r+s) + t = r + (s+t) for all $r, s, t \in \mathbb{C}$;

(F2)(i) Existence of additive identity: There exists $0 \in \mathbb{C}$ such that

$$r + 0 = r$$
 for all $r \in \mathbb{C}$;

(F2)(ii) Existence of additive inverse: Given $r \in \mathbb{C}$ there exists $s \in \mathbb{C}$ such that

$$r+s=0$$
 (we write $s=-r$);

- (F3) Commutativity of addition: r + s = s + r for all $r, s \in \mathbb{C}$;
- (F4) Associativity of multiplication: (rs)t = r(st) for all $r, s, t \in \mathbb{C}$;
- (F5)(i) Existence of multiplicative identity: There exists $1 \in \mathbb{C}$ with $1 \neq 0$ such that

$$r \cdot 1 = r$$
 for all $r \in \mathbb{C}$;

(F5)(ii) Existence of multiplicative inverse: Given $r \in \mathbb{C} \setminus \{0\}$ there exists $t \in \mathbb{C}$ such that

$$rt = 1$$
 (we write $t = r^{-1}$);

- (F6) Commutativity of multiplication: rs = sr for all $r, s \in \mathbb{C}$;
- (F7) Distributive Law: r(s+t) = rs + rt for all $r, s, t \in \mathbb{C}$.

2 SEQUENCES

DEFINITION Let $f : \mathbb{N} \to \mathbb{C}$ (or $\mathbb{N}_0 \to \mathbb{C}$). Then f is called a *sequence*.

If $f(n) = a_n$, then a_n is called the *n*th term. Various notation is used: e.g. $\{a_n\}$ or (a_n) or $\{a_0, a_1, a_2, \ldots\}$.

DEFINITION A sequence $\{a_n\}$ is said to *converge* to a limit *a* if for every $\varepsilon > 0$ there is an integer *N* such that $|a_n - a| < \varepsilon$ whenever $n \ge N$. (The number *N* may depend on ε ; in particular, smaller ε may (and often does) require larger *N*). In this case we write:

$$\lim_{n \to \infty} a_n = a$$

or

 $a_n \to a \text{ as } n \to \infty.$

A sequence that does not converge is said to *diverge*.