Only clopen (both open & closed) sets in \(C \) are \(C \) & \(\emptyset \).

\[\emptyset \subseteq C \text{ is connected if there do not exist open, disjoint sets } \emptyset \text{ and } \emptyset \text{ with } \emptyset \subseteq C \text{ and } \emptyset \cap \emptyset \neq \emptyset. \]

\[S \subseteq S' \cup S'' \text{ and } S' \cap S \neq \emptyset \text{ and } S'' \cap S \neq \emptyset. \]

\[S_4 \text{ is disconnected} \]

\[S_5 \text{ is connected} \]
\mathbb{R} is connected.

\mathbb{R} is connected.

\mathbb{R}^1 connected, \mathbb{R}^2 disconnected, \mathbb{R}^3 connected.

\mathbb{R}^2 path-connected by points in \mathbb{R}^2 can be connected by a finite number of segments in \mathbb{R}^2.

$\mathbb{R}^1, \mathbb{R}^2$ disconnected, \mathbb{R}^3 connected.

$\mathbb{R}^2 \setminus \mathbb{B}_r(1337\epsilon)$ path-connected if any two points in \mathbb{R}^2 can be connected by a finite number of segments in \mathbb{R}^2.
3 are by a finite \(n \) of line segments in \(\mathbb{R} \), joined end to end.

Aside: Show:
If \(L_1, L_2 \) are open,
then so is \(R_1 \cap L_2 \).

pf: If \(\mathbb{R}_1 \cap \mathbb{R}_2 = \emptyset \) done
(\(\emptyset \) is open).
Otherwise: for any \(z \in \mathbb{R}_1 \cap \mathbb{R}_2 \):

- For \(\emptyset \) is open.
- Two points.
Since $\varepsilon_1 > 0$ (since S_1 is open),

$$S_1 \subseteq B_{\varepsilon_1}(z) \subseteq S_2.$$

Since $\varepsilon_2 > 0$ (since S_2 is open),

$$S_2 \subseteq B_{\varepsilon_2}(z) \subseteq S_2.$$

So $S = \min\{\varepsilon_1, \varepsilon_2\}$. Then

$$B_{\varepsilon}(z) \subseteq S,$$

by \bigstar & \bigstar.

Since ε was arbitrary,

$$S \cap \partial R_2,$$ we have shown that

$$\text{Int}(S \cap \partial R_2) = S \cap \partial R_2,$$ i.e.,

$R_1 \cap R_2$ is open. \square

* An open, connected subset C is called a domain.

* A set whose interior is a domain is called a region.

* A pt $z \in C$ is an accumulation of a set $S \subseteq C$.

}$
A set whose interior is a domain is called a region.

A pt $z \in \mathbb{C}$ is an accumulation pt of a set $S \subseteq \mathbb{C}$ if

every deleted nbhd of z intersects S.

E.g. $0 \in \{ \frac{1}{n} \}_{n \in \mathbb{N}}$

\[\frac{1}{2} \]

0 is only acc. pt.
E.g. \(S = B_1 \):
set of acc pts in \(\overline{B}_1 \).

\[815-816 \text{ Limits.} \]

Let \(f \) be defined on a deleted nbhd of \(z_0 \in C \),
with \(f \) taking values in \(C \).

\[\lim_{z \to z_0} f(z) = w_0 \]

Given \(\varepsilon > 0 \) \(\exists \delta > 0 \) s.t.
\[0 < |z - z_0| < \delta \Rightarrow |f(z) - w_0| < \varepsilon \]

Note: \(f \) does \underline{NOT} have to be defined at \(z_0 \) for this to make sense.
E.g. \(\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1 \)

Note: If the limit exists, it is unique.