§12 (8Ed §11) Basic

Topology

Given \(z_0 \in \mathbb{C} \) & \(\varepsilon > 0 \):
\[B_\varepsilon (z_0) = \{ \text{open ball of radius } \varepsilon \text{ about } z_0 \}, \text{a.k.a. } \varepsilon\text{-neighbourhood} \]

\[B_\varepsilon (z_0) = \{ z \in \mathbb{C} \mid |z - z_0| < \varepsilon \} \]

\[\{ z \in \mathbb{C} \mid |z - z_0| \leq \varepsilon \} \]

\[\overline{B}_\varepsilon (z_0) = \{ \text{closed ball of radius } \varepsilon \text{ about } z_0 \}, \text{a.k.a. closed } \varepsilon\text{-neighbourhood of } z_0 \]
\[B_{\varepsilon}(z_0) = \{ z : |z - z_0| < \varepsilon \} \]

<table>
<thead>
<tr>
<th>In \mathbb{R}:</th>
<th>[| (x+i\gamma) - (x_0+i\gamma) |]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$=</td>
</tr>
<tr>
<td></td>
<td>$= \sqrt{(x-x_0)^2 + (y-y_0)^2}$</td>
</tr>
<tr>
<td></td>
<td>$= | (x,y) - (x_0,y) |_2^2$</td>
</tr>
<tr>
<td></td>
<td>$= d((x,y),(x_0,y))_2^2 = d((z,z_0))_2^2$</td>
</tr>
</tbody>
</table>

radius

closed by

\[B_{\varepsilon}(z_0) \]

\[\overline{B}_{\varepsilon}(z_0) \]

\[\varepsilon \text{-nbhd} \]

of \(z_0 \)
In \mathbb{R}:
\[
\begin{array}{c}
\delta > 0 \\
\frac{1}{2} \delta \\
\delta
\end{array}
\]

Take $z \in C$:
* $z \in C$ is an interior point of Ω
\[
y \in \exists \delta > 0 \text{ st } B_{\delta}(z) \subset \Omega
\]
(note: $B_{\delta}(z) \subset \Omega$)
* $z \in C$ is an exterior point of Ω
\[
m \in \exists \delta > 0 \text{ st } B_{\delta}(z) \cap \Omega = \emptyset
\]
$z \in \mathbb{C}$ is a boundary pt of Ω.

$z \in \partial \Omega$ - bdy of Ω, if $\forall \varepsilon > 0$

$B_\varepsilon(z) \cap \Omega \neq \emptyset$.

$B_\varepsilon(z) \cap \Omega^c \neq \emptyset$ ($\Omega^c = \mathbb{C} \setminus \Omega$ - complement of Ω (in \mathbb{C})).

(i.e., any ball centered at z hits both Ω & Ω^c).

Note: interior pts belong to Ω, exterior pts belong to Ω^c; bdy pts may belong to either.
*Int \(\mathcal{D} \) = interior of \(\mathcal{D} \) = \(\{ z : z \) is an interior \(\text{pt of} \mathcal{D} \} \)

*Ext \(\mathcal{D} \) = exterior \(\mathcal{D} \) = \(\{ z : z \) is an exterior \(\text{pt of} \mathcal{D} \} \)

*Bdy \(\mathcal{D} \) = \(\partial \mathcal{D} \) = boundary \(\text{pts of} \mathcal{D} \)

\(\mathcal{D} \) is open \(\iff \mathcal{D} = \text{Int} \mathcal{D} \)

\(\mathcal{D} \) is closed \(\iff \mathcal{D} = \text{Int} \mathcal{D} \cap \partial \mathcal{D} \)
$E \times 1 \quad \Omega_1 = B(0) = B_1 = B$

$\Omega_1 = \mathbb{D}$

$\text{Int } \Omega_1 = \mathbb{D}$

$\text{Ext } \Omega_1 = \{ z : |z| > 1 \}$

$\mathbb{S} \Omega_1 = \{ z : |z| = 1 \}$

$\Omega_1^c = \{ z : |z| \geq 1 \}$

Ω_1 is open

$E \times 2 \quad \Omega_2 = B(0) = B_2 = B$

$\Omega_2 = \mathbb{D}$

$\text{Int } \Omega_2 = \mathbb{D}$

$\text{Ext } \Omega_2 = \text{Ext } \mathbb{D}$

$\mathbb{S} \Omega_2 = \mathbb{S} \mathbb{D} = \mathbb{D} \mathbb{S}$

$\Omega_2^c = \text{Ext } \mathbb{D}$

Ω_2 is closed
Ex 3 \[S_3 = \{ z : 0 < |z| < 1 \} \]

* \(\text{Int } S_3 = \{ z : 0 < |z| < 1 \} \)

* \(\text{Ext } S_3 = \text{Ext } \mathbb{R} \)

* \(\overline{S_3} = \text{Ext } S_3 \cup \{0\} \)

* \(\partial S_3 = S^1 \cup \{0\} \)

\(S_3 \) is neither open nor closed.

Note:

\(\mathbb{R}^1 \) open, \(\mathbb{R}^2 \) closed;

\(\mathbb{R}^3 = \mathbb{R}^2 \setminus \mathbb{R}^1 \)

\(\mathbb{R}^3 \) and \(\mathbb{R}^3^c \) neither open nor closed.

* \(\text{Int } \mathbb{R}^2 = \mathbb{R}^2 \)

* \(\text{Ext } \mathbb{R}^2 = \mathbb{R}^2 \)

* \(\partial \mathbb{R}^2 = \mathbb{R}^1 \)

* \(\mathbb{R}^2 \) is open

* \(\mathbb{R}^2 \) is closed