MATH3302 Coding Theory summary

1. Any Binary Code

- If the reliability of a binary symmetric channel is p and if v and w are words of length n that differ in d positions, then $\Phi_p(v, w) = p^{n-d}(1-p)^d$.

- The information rate of a binary code of length n with $|C|$ codewords is $\frac{1}{n} \log_2 |C|$.

- The weight of a word is the number of ones in it. The Hamming distance between two words is the number of positions in which they differ. So $d(v, w) = wt(v + w)$.

- Maximum Likelihood Decoding: Received word is decoded to the closest codeword. For a code C and a codeword v, $\Theta_p(C, v) = \sum_{w \in L(v)} \Phi_p(v, w)$ is the probability that if v is transmitted over a BSC with reliability p then IMLD correctly concludes that v was sent.

- Error detection and correction: Let δ be the minimum distance between any pair of codewords in C. C will detect all nonzero error patterns of weight less than or equal to $\delta - 1$. C will correct all error patterns with weight less than or equal to $(\delta - 1)/2$ (for odd δ) or $(\delta - 2)/2$ (for even δ).

- Two codes C and C' are equivalent if the words of C' can be obtained by applying a particular permutation to the bits of each word of C.

- The extended code C^* of a code C is obtained by adding a parity check digit to each codeword in C so that the weight of each codeword in C^* is even.

- Given two codes A and B of length n, a new code C of length $2n$ can be formed using the $(a | a + b)$ construction.

2. Linear Binary Codes

- For a linear code C: if $v, w \in C$, then $v + w \in C$; the distance δ is the weight of the nonzero codeword of smallest weight; the dimension k is the number of codewords in a basis for C; the rate of C is k/n; and the number of codewords in C is $|C| = 2^k$.

- If C has dimension k_1 and the dual code C^\perp has dimension k_2, then $k_1 + k_2 = n$.

- A generating matrix for C is a $k \times n$ matrix whose rows form a basis for C. A message word u of length k is encoded as $v = uG$. If G is in standard form then u is the first k bits of the corresponding codeword v.

- A parity check matrix for C is an $n \times (n-k)$ matrix whose columns form a basis for C^\perp. If H is a parity check matrix for C then H^T is a generating matrix for C^\perp. If H is a parity check matrix for C and $v \in C$, then $vH = 0$.

- A linear code C of length n and dimension k has 2^{n-k} cosets. The word $u + v \in C$ if and only if u and v are in the same coset.

- IMLD for linear codes is based on the fact that the most likely error pattern and the received word are in the same coset. For a received word w, calculate its syndrome wH and the most likely error pattern is the word of least weight in the coset with that syndrome. If u is the error pattern in a received word w, then $uH = wH$ is the sum of the rows of H that correspond to the positions where errors occurred in transmission. The reliability of IMLD is the same for all codewords in a linear code.
• If C is a linear code of length n and distance $\delta = 2t + 1$ or $2t + 2$, then

$$|C| \leq \frac{2^n}{\binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{\delta - 1}}.$$

A perfect code is one for which this is an equality, it will correct all error patterns of weight up to and including t and no other error patterns.

• If $\binom{n-1}{0} + \binom{n-1}{1} + \cdots + \binom{n-1}{\delta - 2} < 2^{n-k}$ then there exists a linear code of length n, dimension k and distance at least δ. Thus there exists a linear code of length n and distance at least δ with

$$|C| \geq \frac{2^{n-1}}{\binom{n-1}{0} + \binom{n-1}{1} + \cdots + \binom{n-1}{\delta - 2}}.$$

• Examples of linear codes:
 - Hamming codes $n = 2^r - 1$, $k = 2^r - 1 - r$, $\delta = 3$.
 - Simplex codes (dual of Hamming) $n = 2^r - 1$, $k = r$, $\delta = 2^{r-1}$.
 - r^{th} order Reed-Muller codes $n = 2^m$, $k = \sum_{i=0}^{m} (m)$, $\delta = 2^{m-r}$.
 - Extended Golay code $n = 24$, $k = 12$, $\delta = 8$.
 - Golay code $n = 23$, $k = 12$, $\delta = 7$.

3. Cyclic Linear Codes

• Words of length n correspond to polynomials of degree at most $n - 1$.

• If $v \in C$, then $\gamma(v) \in C$. If $f(x) \in C$, then $xf(x) \in C$.

• The generator of C is the unique polynomial of least degree, and every polynomial $f(x) \in C$ can be written as a multiple of $g(x)$. C has length n and dimension k iff $g(x)$ has degree $n - k$.

• Generating matrices for C (in non-standard and standard form) are

$$G_1 = \begin{pmatrix} g(x) \\ xg(x) \\ \vdots \\ x^{k-1}g(x) \end{pmatrix} \quad G_2 = \begin{pmatrix} r_{n-k} \\ \vdots \\ r_{n-1} \end{pmatrix} \cdot \text{(where } r_i \leftrightarrow x^i \text{ mod } g(x))$$

• The polynomial $g(x)$ is a generator for a cyclic linear code of length n if and only if $g(x)|(1 + x^n)$.

• Message $a(x)$ encodes to $c(x) = a(x)g(x)$ if you use the generating matrix G_1 above.

• IMLD for cyclic linear codes and burst error correction is based on the idea that “closest” means the codeword that differs from the received word in a cyclic burst error pattern of shortest length. Code C is t cyclic burst error correcting if every word of length n that contains a cyclic burst error of length at most t is in a distinct coset of C (so has a distinct syndrome).

• Decoding algorithm involves calculating the syndrome of w, $s = wH$ with corresponding polynomial $s_0(x)$, then calculating $s_i(x) = xs_{i-1}(x)$ until an s_i is found which contains a burst error of length at most t. Then $e_i = (0, s_i)$ and shifting is done to find the error pattern e.

• Interleaving and cross-interleaving are techniques to improve the burst error correction capabilities of codes.