Math 2400

Assignment 5

Due 11:50 a.m. on 6 June, 2014
Drop your paper into the white box with your tutorial number on the fourth floor of the Priestley building

Note: this assignment has SIX problems on TWO pages

1. (8 points) Find the derivative of the function $f:[1, \infty) \rightarrow \mathbb{R}$ defined by the formula

$$
f(x)=\int_{0}^{x^{4}} e^{t^{2}} d t
$$

2. (8 points) Calculate the Taylor series for the function

$$
f(x)=e^{x^{3}}+e^{2 x^{3}}
$$

around the point $a=0$. Where does the series converge to the function $f(x)$?
3. (8 points) Prove that the series

$$
\sum_{n=1}^{\infty} \frac{n^{2}+\cos n}{e^{n^{3}}}
$$

converges absolutely. (Hint: note that $|\cos n| \leq n^{2}$ for all $n \in \mathbb{N}$ and use the integral test.)
4. (8 points) Using Taylor series, calculate $\sinh 1$ correct to 6 decimal places. You must show your work. Simply finding $\sinh 1$ on a calculator will not earn you any credit.
5. Do the following series converge?
(a) (5 points)

$$
\sum_{n=3}^{\infty} \frac{1}{n(\log n)(\log (\log n))}
$$

(Hint: use the integral test and perform change of variable twice.)
(b) (5 points)

$$
\sum_{n=3}^{\infty} \frac{1}{n+\log n}
$$

(Hint: remember the inequality $\log n \leq n$.)
6. (8 points) Prove that the limit

$$
\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x^{2} y z}{x^{8}+y^{4}+z^{2}}
$$

does not exist. (Hint: what if you approach the origin along the curve $z=x^{4}, y=x^{2}$?)

