## Math 2400

## Assignment 4

Due 11:50 a.m. on 14 May, 2014
Drop your paper into the white box with your tutorial number on the fourth floor of the Priestley building

1. (10 points) For which $x \in \mathbb{R}$ does the series

$$
\sum_{n=1}^{\infty} \frac{e^{-x^{2}}}{n^{3}+x^{2}}
$$

converge? Does it converge uniformly on $\mathbb{R}$ ?
2. (15 points) Define

$$
f_{n}(x)=\frac{x^{2 n}}{1+x^{2 n}}
$$

for $x \geq 0$. Show that $\left(f_{n}\right)_{n=1}^{\infty}$ converges uniformly on every interval of the form $[0, a]$ with $a<1$, and of the form $[b, \infty)$ with $b>1$. What is the limit function in each case? Does $\left(f_{n}\right)_{n=1}^{\infty}$ converge uniformly on $[0, \infty)$ ? Justify your answer.
3. (15 points) Does there exist a continuously differentiable function $f$ : $[1,5] \rightarrow \mathbb{R}$ such that $f(1)<0, f(5)>3$ and $f^{\prime}(x) \leq e^{-f(x)}$ ? Justify your answer.
4. (10 points) Suppose $f(x)$ equals $x^{2}$ when $x \in \mathbb{Q}$ and 0 when $x \notin \mathbb{Q}$. Prove that $f$ is differentiable at 0 and find the derivative $f^{\prime}(0)$.

