Math 2400 Assignment 4

Due 11:50 a.m. on 14 May, 2014

Drop your paper into the white box with your tutorial number on the fourth floor of the Priestley building

1. (10 points) For which $x \in \mathbb{R}$ does the series

$$\sum_{n=1}^{\infty} \frac{e^{-x^2}}{n^3 + x^2}$$

converge? Does it converge uniformly on \mathbb{R} ?

2. (15 points) Define

$$f_n(x) = \frac{x^{2n}}{1 + x^{2n}}$$

for $x \ge 0$. Show that $(f_n)_{n=1}^{\infty}$ converges uniformly on every interval of the form [0, a] with a < 1, and of the form $[b, \infty)$ with b > 1. What is the limit function in each case? Does $(f_n)_{n=1}^{\infty}$ converge uniformly on $[0, \infty)$? Justify your answer.

- 3. (15 points) Does there exist a continuously differentiable function f: $[1,5] \to \mathbb{R}$ such that f(1) < 0, f(5) > 3 and $f'(x) \le e^{-f(x)}$? Justify your answer.
- 4. (10 points) Suppose f(x) equals x^2 when $x \in \mathbb{Q}$ and 0 when $x \notin \mathbb{Q}$. Prove that f is differentiable at 0 and find the derivative f'(0).