Math 2400

Assignment 3

Due 11:50 a.m. on 30 April, 2014
Drop your paper into the white box with your tutorial number on the fourth floor of the Priestley building

1. (a) (5 points) Is the function

$$
f(x)=e^{-x}
$$

uniformly continuous on \mathbb{R} ? Justify your answer.
(b) (5 points) Is the function

$$
f(x)=e^{-x^{2}}
$$

uniformly continuous on $[0, \infty)$? Justify your answer.
2. (10 points) Prove that the equation

$$
2\left(\frac{2+|x|}{1+|x|}\right)^{1+|x|}=5
$$

has at least one solution on \mathbb{R}.
3. (a) (5 points) Assuming $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, prove that $|f|$ is continuous.
(b) (5 points) Provide an example of a function $f(x)$ on \mathbb{R} such that $f(x)$ is discontinuous at every point of \mathbb{R} but $|f(x)|$ is continuous on \mathbb{R}.
4. (10 points) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$. Assume also f is continuous at 0 . Prove that f is continuous on \mathbb{R}.
5. (a) (5 points) Suppose f and g are uniformly continuous and bounded on some interval I. Prove that the product function $f g$ is uniformly continuous on I.
(b) (5 points) Provide an example of two uniformly continuous functions (not necessarily bounded) whose product is NOT uniformly continuous.

