Math 2400 Assignment 2

Due 11:50 a.m. on 9 April, 2014

Drop your paper into the white box with your tutorial number on the fourth floor of the Priestley building

- 1. (10 points) Prove that the set of triples $\{(p,q,r) \mid p,q,r \in \mathbb{N}\}$ is countable.
- 2. (10 points) For every $x \in \mathbb{R}$, compute

$$\lim_{n \to \infty} \left(\lim_{k \to \infty} (\cos n! \pi x)^{2k} \right).$$

Here, we use the standard notation $n! = 1 \cdot 2 \cdot 3 \cdots (n-2) \cdot (n-1) \cdot n$.

- 3. (10 points) Suppose $(a_n)_{n=1}^{\infty}$ is a convergent sequence and $a_n \in [0,1]$ for all n. Prove that the limit of $(a_n)_{n=1}^{\infty}$ lies in [0,1].
- 4. (10 points) Suppose $(x_n)_{n=1}^{\infty}$ is a bounded sequence of real numbers.
 - (a) Prove that

$$\liminf_{n \to \infty} x_n \le \limsup_{n \to \infty} x_n.$$

- (b) Find $\limsup_{n\to\infty} (-1)^n \left(1+\frac{1}{n}\right)$ and $\liminf_{n\to\infty} (-1)^n \left(1+\frac{1}{n}\right)$.
- 5. (10 points) Consider a sequence $(b_n)_{n=1}^{\infty}$. We say that the infinite product $\prod_{n=1}^{\infty} b_n$ converges to $p \in \mathbb{R} \setminus \{0\}$ if $\lim_{n\to\infty} \prod_{k=1}^{n} b_k = p$. If the product does not converge to any $p \in \mathbb{R} \setminus \{0\}$, we say it diverges.
 - (a) Prove that $\lim_{n\to\infty} b_n = 1$ if $\prod_{n=1}^{\infty} b_n$ converges.
 - (b) Find $\prod_{n=1}^{\infty} \frac{n^3 + n^2 + n}{n^3 + 1}$ or show that the product diverges.