Math 2400

Assignment 2

Due 11:50 a.m. on 9 April, 2014
Drop your paper into the white box with your tutorial number on the fourth floor of the Priestley building

1. (10 points) Prove that the set of triples $\{(p, q, r) \mid p, q, r \in \mathbb{N}\}$ is countable.
2. (10 points) For every $x \in \mathbb{R}$, compute

$$
\lim _{n \rightarrow \infty}\left(\lim _{k \rightarrow \infty}(\cos n!\pi x)^{2 k}\right) .
$$

Here, we use the standard notation $n!=1 \cdot 2 \cdot 3 \cdots \cdots(n-2) \cdot(n-1) \cdot n$.
3. (10 points) Suppose $\left(a_{n}\right)_{n=1}^{\infty}$ is a convergent sequence and $a_{n} \in[0,1]$ for all n. Prove that the limit of $\left(a_{n}\right)_{n=1}^{\infty}$ lies in $[0,1]$.
4. (10 points) Suppose $\left(x_{n}\right)_{n=1}^{\infty}$ is a bounded sequence of real numbers.
(a) Prove that

$$
\liminf _{n \rightarrow \infty} x_{n} \leq \limsup _{n \rightarrow \infty} x_{n} .
$$

(b) Find $\lim \sup _{n \rightarrow \infty}(-1)^{n}\left(1+\frac{1}{n}\right)$ and $\lim \inf _{n \rightarrow \infty}(-1)^{n}\left(1+\frac{1}{n}\right)$.
5. (10 points) Consider a sequence $\left(b_{n}\right)_{n=1}^{\infty}$. We say that the infinite product $\Pi_{n=1}^{\infty} b_{n}$ converges to $p \in \mathbb{R} \backslash\{0\}$ if $\lim _{n \rightarrow \infty} \Pi_{k=1}^{n} b_{k}=p$. If the product does not converge to any $p \in \mathbb{R} \backslash\{0\}$, we say it diverges.
(a) Prove that $\lim _{n \rightarrow \infty} b_{n}=1$ if $\prod_{n=1}^{\infty} b_{n}$ converges.
(b) Find $\Pi_{n=1}^{\infty} \frac{n^{3}+n^{2}+n}{n^{3}+1}$ or show that the product diverges.

