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Question 1

Let G(x) be the antiderivative of g(x) = ex
2
, i.e. G′(x) = g(x) = ex

2
. Then by the FTC

we have ∫ x4

0

et
2

dt = G(x4)−G(0).

Taking the derivative of the RHS with respect to x gives

d

dx

(
G(x4)−G(0)

)
= G′(x4) · 4x3 −G′(0) · 0

= ex
8 · 4x3,

hence

d

dx

∫ x4

0

et
2

dt = 4x3ex
8

.

Question 2

Recalling that the Taylor expansion of ey around 0 is

ey =
∞∑
n=0

yn

n!
,

we make the substitutions y = x2 and y = 2x3 to get

ex
2

+ e2x
3

=
∞∑
n=0

x2n

n!
+
∞∑
n=0

2nx3n

n!
=
∞∑
n=0

x2n + 2nx3n

n!
.

We now look at convergence. It will be easiest to consider each series individually. Using
the ratio test we have

lim
n→∞

|x2(n+1)|
|(n+ 1)!|

· |n!|
|x2n|

= lim
n→∞

x2

n
= 0

and

lim
n→∞

|2n+1x3(n+1)|
|(n+ 1)!|

· |n!|
|2nx3n|

= lim
n→∞

|2x3|
n

= 0

for all fixed x ∈ R. Hence both series converge for all x ∈ R and the Taylor series
converges to f(x) on all of R.
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Question 3

We first note that

0 ≤ n2 + cosn

en3 ≤ 3n2

en3 = 3n2e−n
3

.

We aim to use the integral test, so calculating the appropriate integral gives∫ ∞
1

3x2e−x
3

dx = lim
a→∞

(
−e−a3 + e−1

)
=

1

e
.

Hence by the integral test, the series

∞∑
n=1

n2 + cosn

en3

converges (absolutely).

Question 4

Expanding sinh(x) around 0 we have

Tn(x) =
sinh(0)

0!
x0 +

cosh(0)

1!
x1 +

sinh(0)

2!
x2 + · · ·+ sinh(n)(0)

n!
xn

= 0 + x1 + 0 +
x3

3!
+ 0 +

x5

5!
+ 0 + · · ·+ sinh(n)(0)

n!
xn.

Note that the even terms are 0, hence for n odd we have

Tn(x) = Tn+1(x),

i.e. if we calculate up to n odd, we get the next term for free. So assume we have n even.
Then our error term is

Rn(x) =
sinh(c)

(n+ 1)!
xn+1

which at x = 1 becomes

Rn(1) =
sinh(c)

(n+ 1)!

for some c ∈ (0, 1). For c ∈ (0, 1) we can (crudely) bound sinh(c) by

0 ≤ sinh(c) ≤ 2,

hence

0 ≤ Rn(1) ≤ 2

(n+ 1)!
.
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To ensure that our estimate is within 6 decimal places, we must choose an n large enough
such that

2

(n+ 1)!
< 10−7.

Choosing n = 10 will suffice. Hence

sinh(1) ≈ 0 +
1

1!
+ 0 +

1

3!
+ 0 +

1

5!
+ 0 +

1

7!
+ 0 +

1

9!
+ 0 = 1.17520116843.

Question 5

Part (a)

The integral test tells us that the series
∞∑
n=a

f(n) converges if and only if the improper

integral
∫∞
a
f(x) dx converges. Hence we wish to determine if the integral∫ ∞

3

1

x log(log(log(x)))
dx

converges. We first note that the integrand is well defined on (3,∞). We make the
substitution u = log(log(x)). Then du

dx
= 1

log(x)
· 1
x
, hence∫ ∞

3

1

x log(log(log(x)))
dx =

∫ ∞
log(log(3))

1

u
du

= lim
b→∞

[log(b)− log(log(log(3)))] .

But since log(b)→∞ as b→∞, the above limit does not exist and the series diverges.

Part (b)

We wish to compare our series to the harmonic series. Recalling that log(n) < n we
observe that

1

n+ log(n)
≥ 1

n+ n
=

1

2n
.

But we know that the harmonic series diverges (by ratio test, for example), and that

∞∑
n=3

1

n+ log(n)
≥

∞∑
n=3

1

2n
=

1

2

∞∑
n=3

1

n
.

Hence the series diverges by the comparison test.
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Question 6

Suppose that the limit exists and is equal to L ∈ R. Then for any parametrised curve
γ : R→ R3 where γ(t) = (x(t), y(t), z(t)) and γ(0) = (0, 0, 0), we must have

lim
t→0

x2yz

x8 + y4 + z3
= L.

As per the hint, calculating the limit as we approach along the curve (t, t2, t4) we get

lim
t→0

x2yz

x8 + y4 + z3
= lim

t→0

t8

3t8
=

1

3
= L.

But calculating the limit as we approach along the curve (t, t, t) we find

lim
t→0

x2yz

x8 + y4 + z3
= lim

t→0

t4

t8 + t4 + t2
= 0 6= L.

Contradiction. Hence our assumption that the limit exists was incorrect.
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