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Question 1

Let G(z) be the antiderivative of g(z) = ¢*”, i.e. G'(z) = g(z) = *°. Then by the FTC
we have

Taking the derivative of the RHS with respect to x gives
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Question 2

Recalling that the Taylor expansion of e¥ around 0 is
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we make the substitutions y = 2% and y = 22° to get
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We now look at convergence. It will be easiest to consider each series individually. Using
the ratio test we have
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for all fixed x € R. Hence both series converge for all + € R and the Taylor series
converges to f(z) on all of R.



Question 3

We first note that
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We aim to use the integral test, so calculating the appropriate integral gives
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Hence by the integral test, the series
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converges (absolutely).
Question 4
Expanding sinh(z) around 0 we have
_sinh(0) ,  cosh(0) ;  sinh(0) , sinh™(0)
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Note that the even terms are 0, hence for n odd we have

T(x) = Topa(2),

i.e. if we calculate up to n odd, we get the next term for free. So assume we have n even.
Then our error term is

_ sinh(c) 4
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which at x = 1 becomes
sinh(c)
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for some ¢ € (0,1). For ¢ € (0,1) we can (crudely) bound sinh(c) by
0 < sinh(c) <2,

hence
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To ensure that our estimate is within 6 decimal places, we must choose an n large enough
such that
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Choosing n = 10 will suffice. Hence
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Question 5
Part (a)

The integral test tells us that the series > f(n) converges if and only if the improper

integral faoo f(z) dx converges. Hence we wish to determine if the integral

e 1
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converges. We first note that the integrand is well defined on (3,00). We make the

substitution u = log(log(z)). Then % = logl(:v) -1 hence
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But since log(b) — oo as b — oo, the above limit does not exist and the series diverges.

Part (b)

We wish to compare our series to the harmonic series. Recalling that log(n) < n we
observe that
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But we know that the harmonic series diverges (by ratio test, for example), and that
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Hence the series diverges by the comparison test.



Question 6

Suppose that the limit exists and is equal to L € R. Then for any parametrised curve
v : R — R3 where v(t) = (x(t), y(t), 2(t)) and v(0) = (0,0,0), we must have
x2yz B
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As per the hint, calculating the limit as we approach along the curve (¢, % 1) we get
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But calculating the limit as we approach along the curve (¢,t,t) we find
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Contradiction. Hence our assumption that the limit exists was incorrect.



